Almost everywhere convergence of Laguerre series
Studia Mathematica, Tome 109 (1994) no. 3, pp. 291-301
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $a ∈ ℤ^+$ and $f ∈ L^p (ℝ^+), 1 ≤ p ≤ ∞ $. Denote by $c_j$ the inner product of f and the Laguerre function $ℒ^a_j$. We prove that if ${c_j}$ satisfies $lim_{λ↓1} \overline lim_{n→∞} ∑_{n
Keywords:
almost everywhere convergence, Cesàro means, Laguerre polynomials, Riesz means
Affiliations des auteurs :
Chang-Pao Chen 1 ;  1
@article{10_4064_sm_109_3_291_301,
author = {Chang-Pao Chen and },
title = {Almost everywhere convergence of {Laguerre} series},
journal = {Studia Mathematica},
pages = {291--301},
publisher = {mathdoc},
volume = {109},
number = {3},
year = {1994},
doi = {10.4064/sm-109-3-291-301},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-291-301/}
}
TY - JOUR AU - Chang-Pao Chen AU - TI - Almost everywhere convergence of Laguerre series JO - Studia Mathematica PY - 1994 SP - 291 EP - 301 VL - 109 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-291-301/ DO - 10.4064/sm-109-3-291-301 LA - en ID - 10_4064_sm_109_3_291_301 ER -
Chang-Pao Chen; . Almost everywhere convergence of Laguerre series. Studia Mathematica, Tome 109 (1994) no. 3, pp. 291-301. doi: 10.4064/sm-109-3-291-301
Cité par Sources :