Almost everywhere convergence of Laguerre series
Studia Mathematica, Tome 109 (1994) no. 3, pp. 291-301

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $a ∈ ℤ^+$ and $f ∈ L^p (ℝ^+), 1 ≤ p ≤ ∞ $. Denote by $c_j$ the inner product of f and the Laguerre function $ℒ^a_j$. We prove that if ${c_j}$ satisfies $lim_{λ↓1} \overline lim_{n→∞} ∑_{n
DOI : 10.4064/sm-109-3-291-301
Keywords: almost everywhere convergence, Cesàro means, Laguerre polynomials, Riesz means

Chang-Pao Chen 1 ;  1

1
@article{10_4064_sm_109_3_291_301,
     author = {Chang-Pao Chen and  },
     title = {Almost everywhere convergence of {Laguerre} series},
     journal = {Studia Mathematica},
     pages = {291--301},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {1994},
     doi = {10.4064/sm-109-3-291-301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-291-301/}
}
TY  - JOUR
AU  - Chang-Pao Chen
AU  -  
TI  - Almost everywhere convergence of Laguerre series
JO  - Studia Mathematica
PY  - 1994
SP  - 291
EP  - 301
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-291-301/
DO  - 10.4064/sm-109-3-291-301
LA  - en
ID  - 10_4064_sm_109_3_291_301
ER  - 
%0 Journal Article
%A Chang-Pao Chen
%A  
%T Almost everywhere convergence of Laguerre series
%J Studia Mathematica
%D 1994
%P 291-301
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-291-301/
%R 10.4064/sm-109-3-291-301
%G en
%F 10_4064_sm_109_3_291_301
Chang-Pao Chen;  . Almost everywhere convergence of Laguerre series. Studia Mathematica, Tome 109 (1994) no. 3, pp. 291-301. doi: 10.4064/sm-109-3-291-301

Cité par Sources :