Almost everywhere convergence of Laguerre series
Studia Mathematica, Tome 109 (1994) no. 3, pp. 291-301
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $a ∈ ℤ^+$ and $f ∈ L^p (ℝ^+), 1 ≤ p ≤ ∞ $. Denote by $c_j$ the inner product of f and the Laguerre function $ℒ^a_j$. We prove that if ${c_j}$ satisfies $lim_{λ↓1} \overline lim_{n→∞} ∑_{n
Keywords:
almost everywhere convergence, Cesàro means, Laguerre polynomials, Riesz means
@article{10_4064_sm_109_3_291_301,
author = {Chang-Pao Chen and },
title = {Almost everywhere convergence of {Laguerre} series},
journal = {Studia Mathematica},
pages = {291--301},
year = {1994},
volume = {109},
number = {3},
doi = {10.4064/sm-109-3-291-301},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-291-301/}
}
Chang-Pao Chen; . Almost everywhere convergence of Laguerre series. Studia Mathematica, Tome 109 (1994) no. 3, pp. 291-301. doi: 10.4064/sm-109-3-291-301
Cité par Sources :