Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces
Studia Mathematica, Tome 109 (1994) no. 3, pp. 255-276
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study sufficient conditions on the weight w, in terms of membership in the $A_p$ classes, for the spline wavelet systems to be unconditional bases of the weighted space $H^p(w)$. The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.
Keywords:
wavelets, splines, $H^p$ spaces, $A_p$ weights, Schauder and unconditional bases
Affiliations des auteurs :
J. García-Cuerva 1
@article{10_4064_sm_109_3_255_276,
author = {J. Garc{\'\i}a-Cuerva},
title = {Calder\'on-Zygmund operators and unconditional bases of weighted {Hardy} spaces},
journal = {Studia Mathematica},
pages = {255--276},
publisher = {mathdoc},
volume = {109},
number = {3},
year = {1994},
doi = {10.4064/sm-109-3-255-276},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-255-276/}
}
TY - JOUR AU - J. García-Cuerva TI - Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces JO - Studia Mathematica PY - 1994 SP - 255 EP - 276 VL - 109 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-255-276/ DO - 10.4064/sm-109-3-255-276 LA - en ID - 10_4064_sm_109_3_255_276 ER -
%0 Journal Article %A J. García-Cuerva %T Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces %J Studia Mathematica %D 1994 %P 255-276 %V 109 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-255-276/ %R 10.4064/sm-109-3-255-276 %G en %F 10_4064_sm_109_3_255_276
J. García-Cuerva. Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces. Studia Mathematica, Tome 109 (1994) no. 3, pp. 255-276. doi: 10.4064/sm-109-3-255-276
Cité par Sources :