Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces
Studia Mathematica, Tome 109 (1994) no. 3, pp. 255-276

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study sufficient conditions on the weight w, in terms of membership in the $A_p$ classes, for the spline wavelet systems to be unconditional bases of the weighted space $H^p(w)$. The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.
DOI : 10.4064/sm-109-3-255-276
Keywords: wavelets, splines, $H^p$ spaces, $A_p$ weights, Schauder and unconditional bases

J. García-Cuerva 1

1
@article{10_4064_sm_109_3_255_276,
     author = {J. Garc{\'\i}a-Cuerva},
     title = {Calder\'on-Zygmund operators and unconditional bases of weighted {Hardy} spaces},
     journal = {Studia Mathematica},
     pages = {255--276},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {1994},
     doi = {10.4064/sm-109-3-255-276},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-255-276/}
}
TY  - JOUR
AU  - J. García-Cuerva
TI  - Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces
JO  - Studia Mathematica
PY  - 1994
SP  - 255
EP  - 276
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-255-276/
DO  - 10.4064/sm-109-3-255-276
LA  - en
ID  - 10_4064_sm_109_3_255_276
ER  - 
%0 Journal Article
%A J. García-Cuerva
%T Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces
%J Studia Mathematica
%D 1994
%P 255-276
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-255-276/
%R 10.4064/sm-109-3-255-276
%G en
%F 10_4064_sm_109_3_255_276
J. García-Cuerva. Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces. Studia Mathematica, Tome 109 (1994) no. 3, pp. 255-276. doi: 10.4064/sm-109-3-255-276

Cité par Sources :