Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces
Studia Mathematica, Tome 109 (1994) no. 3, pp. 255-276
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study sufficient conditions on the weight w, in terms of membership in the $A_p$ classes, for the spline wavelet systems to be unconditional bases of the weighted space $H^p(w)$. The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.
Keywords:
wavelets, splines, $H^p$ spaces, $A_p$ weights, Schauder and unconditional bases
@article{10_4064_sm_109_3_255_276,
author = {J. Garc{\'\i}a-Cuerva},
title = {Calder\'on-Zygmund operators and unconditional bases of weighted {Hardy} spaces},
journal = {Studia Mathematica},
pages = {255--276},
year = {1994},
volume = {109},
number = {3},
doi = {10.4064/sm-109-3-255-276},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-255-276/}
}
TY - JOUR AU - J. García-Cuerva TI - Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces JO - Studia Mathematica PY - 1994 SP - 255 EP - 276 VL - 109 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-255-276/ DO - 10.4064/sm-109-3-255-276 LA - en ID - 10_4064_sm_109_3_255_276 ER -
J. García-Cuerva. Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces. Studia Mathematica, Tome 109 (1994) no. 3, pp. 255-276. doi: 10.4064/sm-109-3-255-276
Cité par Sources :