Some new Hardy spaces $L²H^{q}_{R}(ℝ²_{+} × ℝ²_{+})$ (0 q ≤ 1)
Studia Mathematica, Tome 109 (1994) no. 3, pp. 217-231 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

For 0 q ≤ 1, the author introduces a new Hardy space $L² H^q_ℝ (ℝ²_+ × ℝ²_+)$ on the product domain, and gives its generalized Lusin-area characterization. From this characterization, a φ-transform characterization in M. Frazier and B. Jawerth's sense is deduced.
@article{10_4064_sm_109_3_217_231,
     author = {Dachun Yang},
     title = {Some new {Hardy} spaces $L{\texttwosuperior}H^{q}_{R}(\ensuremath{\mathbb{R}}{\texttwosuperior}_{+} {\texttimes} \ensuremath{\mathbb{R}}{\texttwosuperior}_{+})$ (0 < q \ensuremath{\leq} 1)},
     journal = {Studia Mathematica},
     pages = {217--231},
     year = {1994},
     volume = {109},
     number = {3},
     doi = {10.4064/sm-109-3-217-231},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-217-231/}
}
TY  - JOUR
AU  - Dachun Yang
TI  - Some new Hardy spaces $L²H^{q}_{R}(ℝ²_{+} × ℝ²_{+})$ (0 < q ≤ 1)
JO  - Studia Mathematica
PY  - 1994
SP  - 217
EP  - 231
VL  - 109
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-217-231/
DO  - 10.4064/sm-109-3-217-231
LA  - en
ID  - 10_4064_sm_109_3_217_231
ER  - 
%0 Journal Article
%A Dachun Yang
%T Some new Hardy spaces $L²H^{q}_{R}(ℝ²_{+} × ℝ²_{+})$ (0 < q ≤ 1)
%J Studia Mathematica
%D 1994
%P 217-231
%V 109
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-217-231/
%R 10.4064/sm-109-3-217-231
%G en
%F 10_4064_sm_109_3_217_231
Dachun Yang. Some new Hardy spaces $L²H^{q}_{R}(ℝ²_{+} × ℝ²_{+})$ (0 < q ≤ 1). Studia Mathematica, Tome 109 (1994) no. 3, pp. 217-231. doi: 10.4064/sm-109-3-217-231

Cité par Sources :