Some new Hardy spaces $L²H^{q}_{R}(ℝ²_{+} × ℝ²_{+})$ (0 q ≤ 1)
Studia Mathematica, Tome 109 (1994) no. 3, pp. 217-231
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For 0 q ≤ 1, the author introduces a new Hardy space $L² H^q_ℝ (ℝ²_+ × ℝ²_+)$ on the product domain, and gives its generalized Lusin-area characterization. From this characterization, a φ-transform characterization in M. Frazier and B. Jawerth's sense is deduced.
@article{10_4064_sm_109_3_217_231,
author = {Dachun Yang},
title = {Some new {Hardy} spaces $L{\texttwosuperior}H^{q}_{R}(\ensuremath{\mathbb{R}}{\texttwosuperior}_{+} {\texttimes} \ensuremath{\mathbb{R}}{\texttwosuperior}_{+})$ (0 < q \ensuremath{\leq} 1)},
journal = {Studia Mathematica},
pages = {217--231},
year = {1994},
volume = {109},
number = {3},
doi = {10.4064/sm-109-3-217-231},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-217-231/}
}
TY - JOUR
AU - Dachun Yang
TI - Some new Hardy spaces $L²H^{q}_{R}(ℝ²_{+} × ℝ²_{+})$ (0 < q ≤ 1)
JO - Studia Mathematica
PY - 1994
SP - 217
EP - 231
VL - 109
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-217-231/
DO - 10.4064/sm-109-3-217-231
LA - en
ID - 10_4064_sm_109_3_217_231
ER -
Dachun Yang. Some new Hardy spaces $L²H^{q}_{R}(ℝ²_{+} × ℝ²_{+})$ (0 < q ≤ 1). Studia Mathematica, Tome 109 (1994) no. 3, pp. 217-231. doi: 10.4064/sm-109-3-217-231
Cité par Sources :