Pointwise ergodic theorems for functions in Lorentz spaces $L_{pq}$ with p ≠ ∞
Studia Mathematica, Tome 109 (1994) no. 2, pp. 209-216

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let τ be a null preserving point transformation on a finite measure space. Assuming τ is invertible, P. Ortega Salvador has recently obtained sufficient conditions for the almost everywhere convergence of the ergodic averages in $L_{pq}$ with 1 p ∞, 1 q ∞. In this paper we obtain necessary and sufficient conditions for the almost everywhere convergence, without assuming that τ is invertible and only assuming that p ≠ ∞.
DOI : 10.4064/sm-109-2-209-216
Keywords: pointwise ergodic theorems, $L_{pq}$ spaces, null preserving transformations, measure preserving transformations, positive contractions on $L_1$ spaces

Ryotaro Sato 1

1
@article{10_4064_sm_109_2_209_216,
     author = {Ryotaro Sato},
     title = {Pointwise ergodic theorems for functions in {Lorentz} spaces $L_{pq}$ with p \ensuremath{\neq} \ensuremath{\infty}},
     journal = {Studia Mathematica},
     pages = {209--216},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {1994},
     doi = {10.4064/sm-109-2-209-216},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-209-216/}
}
TY  - JOUR
AU  - Ryotaro Sato
TI  - Pointwise ergodic theorems for functions in Lorentz spaces $L_{pq}$ with p ≠ ∞
JO  - Studia Mathematica
PY  - 1994
SP  - 209
EP  - 216
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-209-216/
DO  - 10.4064/sm-109-2-209-216
LA  - en
ID  - 10_4064_sm_109_2_209_216
ER  - 
%0 Journal Article
%A Ryotaro Sato
%T Pointwise ergodic theorems for functions in Lorentz spaces $L_{pq}$ with p ≠ ∞
%J Studia Mathematica
%D 1994
%P 209-216
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-209-216/
%R 10.4064/sm-109-2-209-216
%G en
%F 10_4064_sm_109_2_209_216
Ryotaro Sato. Pointwise ergodic theorems for functions in Lorentz spaces $L_{pq}$ with p ≠ ∞. Studia Mathematica, Tome 109 (1994) no. 2, pp. 209-216. doi: 10.4064/sm-109-2-209-216

Cité par Sources :