A localization property for $B^{s}_{pq}$ and $F^{s}_{pq}$ spaces
Studia Mathematica, Tome 109 (1994) no. 2, pp. 183-195 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $f^{j} = ∑_{k} a_{k} f(2^{j+1}x - 2k)$, where the sum is taken over the lattice of all points k in $ℝ^n$ having integer-valued components, j∈ℕ and $a_k ∈ ℂ$. Let $A^{s}_{pq}$ be either $B^{s}_{pq}$ or $F^{s}_{pq}$ (s ∈ ℝ, 0 p ∞, 0 q ≤ ∞) on $ℝ^n.$ The aim of the paper is to clarify under what conditions $∥f^{j} | A^{s}_{pq}∥$ is equivalent to $2^{j(s-n/p)} (∑_{k} |a_k|^p)^{1/p} ∥f | A^{s}_{pq}∥$.
@article{10_4064_sm_109_2_183_195,
     author = {Hans Triebel},
     title = {A localization property for $B^{s}_{pq}$ and $F^{s}_{pq}$ spaces},
     journal = {Studia Mathematica},
     pages = {183--195},
     year = {1994},
     volume = {109},
     number = {2},
     doi = {10.4064/sm-109-2-183-195},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-183-195/}
}
TY  - JOUR
AU  - Hans Triebel
TI  - A localization property for $B^{s}_{pq}$ and $F^{s}_{pq}$ spaces
JO  - Studia Mathematica
PY  - 1994
SP  - 183
EP  - 195
VL  - 109
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-183-195/
DO  - 10.4064/sm-109-2-183-195
LA  - en
ID  - 10_4064_sm_109_2_183_195
ER  - 
%0 Journal Article
%A Hans Triebel
%T A localization property for $B^{s}_{pq}$ and $F^{s}_{pq}$ spaces
%J Studia Mathematica
%D 1994
%P 183-195
%V 109
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-183-195/
%R 10.4064/sm-109-2-183-195
%G en
%F 10_4064_sm_109_2_183_195
Hans Triebel. A localization property for $B^{s}_{pq}$ and $F^{s}_{pq}$ spaces. Studia Mathematica, Tome 109 (1994) no. 2, pp. 183-195. doi: 10.4064/sm-109-2-183-195

Cité par Sources :