A localization property for $B^{s}_{pq}$ and $F^{s}_{pq}$ spaces
Studia Mathematica, Tome 109 (1994) no. 2, pp. 183-195
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $f^{j} = ∑_{k} a_{k} f(2^{j+1}x - 2k)$, where the sum is taken over the lattice of all points k in $ℝ^n$ having integer-valued components, j∈ℕ and $a_k ∈ ℂ$. Let $A^{s}_{pq}$ be either $B^{s}_{pq}$ or $F^{s}_{pq}$ (s ∈ ℝ, 0 p ∞, 0 q ≤ ∞) on $ℝ^n.$ The aim of the paper is to clarify under what conditions $∥f^{j} | A^{s}_{pq}∥$ is equivalent to $2^{j(s-n/p)} (∑_{k} |a_k|^p)^{1/p} ∥f | A^{s}_{pq}∥$.
@article{10_4064_sm_109_2_183_195,
author = {Hans Triebel},
title = {A localization property for $B^{s}_{pq}$ and $F^{s}_{pq}$ spaces},
journal = {Studia Mathematica},
pages = {183--195},
year = {1994},
volume = {109},
number = {2},
doi = {10.4064/sm-109-2-183-195},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-183-195/}
}
TY - JOUR
AU - Hans Triebel
TI - A localization property for $B^{s}_{pq}$ and $F^{s}_{pq}$ spaces
JO - Studia Mathematica
PY - 1994
SP - 183
EP - 195
VL - 109
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-183-195/
DO - 10.4064/sm-109-2-183-195
LA - en
ID - 10_4064_sm_109_2_183_195
ER -
Hans Triebel. A localization property for $B^{s}_{pq}$ and $F^{s}_{pq}$ spaces. Studia Mathematica, Tome 109 (1994) no. 2, pp. 183-195. doi: 10.4064/sm-109-2-183-195
Cité par Sources :