The converse of the Hölder inequality and its generalizations
Studia Mathematica, Tome 109 (1994) no. 2, pp. 171-182

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let (Ω,Σ,μ) be a measure space with two sets A,B ∈ Σ such that 0 μ (A) 1 μ (B) ∞ and suppose that ϕ and ψ are arbitrary bijections of [0,∞) such that ϕ(0) = ψ(0) = 0. The main result says that if $ʃ_Ω xydμ ≤ ϕ^{-1} (ʃ_{Ω} ϕ∘x dμ) ψ^{-1} (ʃ_{Ω} ψ∘x dμ)$ for all μ-integrable nonnegative step functions x,y then ϕ and ψ must be conjugate power functions. If the measure space (Ω,Σ,μ) has one of the following properties: (a) μ (A) ≤ 1 for every A ∈ Σ of finite measure; (b) μ (A) ≥ 1 for every A ∈ Σ of positive measure, then there exist some broad classes of nonpower bijections ϕ and ψ such that the above inequality holds true. A general inequality which contains integral Hölder and Minkowski inequalities as very special cases is also given.
DOI : 10.4064/sm-109-2-171-182
Keywords: measure space, integrable step functions, conjugate functions, a converse of Hölder inequality, subadditive function, convex function, generalized Hölder-Minkowski inequality

Janusz Matkowski 1

1
@article{10_4064_sm_109_2_171_182,
     author = {Janusz Matkowski},
     title = {The converse of the {H\"older} inequality and its generalizations},
     journal = {Studia Mathematica},
     pages = {171--182},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {1994},
     doi = {10.4064/sm-109-2-171-182},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-171-182/}
}
TY  - JOUR
AU  - Janusz Matkowski
TI  - The converse of the Hölder inequality and its generalizations
JO  - Studia Mathematica
PY  - 1994
SP  - 171
EP  - 182
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-171-182/
DO  - 10.4064/sm-109-2-171-182
LA  - en
ID  - 10_4064_sm_109_2_171_182
ER  - 
%0 Journal Article
%A Janusz Matkowski
%T The converse of the Hölder inequality and its generalizations
%J Studia Mathematica
%D 1994
%P 171-182
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-171-182/
%R 10.4064/sm-109-2-171-182
%G en
%F 10_4064_sm_109_2_171_182
Janusz Matkowski. The converse of the Hölder inequality and its generalizations. Studia Mathematica, Tome 109 (1994) no. 2, pp. 171-182. doi: 10.4064/sm-109-2-171-182

Cité par Sources :