The converse of the Hölder inequality and its generalizations
Studia Mathematica, Tome 109 (1994) no. 2, pp. 171-182
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let (Ω,Σ,μ) be a measure space with two sets A,B ∈ Σ such that 0 μ (A) 1 μ (B) ∞ and suppose that ϕ and ψ are arbitrary bijections of [0,∞) such that ϕ(0) = ψ(0) = 0. The main result says that if $ʃ_Ω xydμ ≤ ϕ^{-1} (ʃ_{Ω} ϕ∘x dμ) ψ^{-1} (ʃ_{Ω} ψ∘x dμ)$ for all μ-integrable nonnegative step functions x,y then ϕ and ψ must be conjugate power functions. If the measure space (Ω,Σ,μ) has one of the following properties: (a) μ (A) ≤ 1 for every A ∈ Σ of finite measure; (b) μ (A) ≥ 1 for every A ∈ Σ of positive measure, then there exist some broad classes of nonpower bijections ϕ and ψ such that the above inequality holds true. A general inequality which contains integral Hölder and Minkowski inequalities as very special cases is also given.
Keywords:
measure space, integrable step functions, conjugate functions, a converse of Hölder inequality, subadditive function, convex function, generalized Hölder-Minkowski inequality
Affiliations des auteurs :
Janusz Matkowski 1
@article{10_4064_sm_109_2_171_182,
author = {Janusz Matkowski},
title = {The converse of the {H\"older} inequality and its generalizations},
journal = {Studia Mathematica},
pages = {171--182},
publisher = {mathdoc},
volume = {109},
number = {2},
year = {1994},
doi = {10.4064/sm-109-2-171-182},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-171-182/}
}
TY - JOUR AU - Janusz Matkowski TI - The converse of the Hölder inequality and its generalizations JO - Studia Mathematica PY - 1994 SP - 171 EP - 182 VL - 109 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-171-182/ DO - 10.4064/sm-109-2-171-182 LA - en ID - 10_4064_sm_109_2_171_182 ER -
Janusz Matkowski. The converse of the Hölder inequality and its generalizations. Studia Mathematica, Tome 109 (1994) no. 2, pp. 171-182. doi: 10.4064/sm-109-2-171-182
Cité par Sources :