Integral operators and weighted amalgams
Studia Mathematica, Tome 109 (1994) no. 2, pp. 133-157

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For large classes of indices, we characterize the weights u, v for which the Hardy operator is bounded from $ℓ^{q̅}(L^{p̅}_{v})$ into $ℓ^{q}(L^{p}_{u})$. For more general operators of Hardy type, norm inequalities are proved which extend to weighted amalgams known estimates in weighted $L^p$-spaces. Amalgams of the form $ℓ^{q}(L^{p}_{w})$, 1 p,q ∞ , q ≠ p, $w ∈ A_p$, are also considered and sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator and local maximal operator in these spaces are obtained.
DOI : 10.4064/sm-109-2-133-157
Keywords: amalgam spaces, weights, $A_p$ weights, Hardy operator, Hardy-Littlewood maximal operator, weighted amalgam inequalities

C. Carton-Lebrun 1

1
@article{10_4064_sm_109_2_133_157,
     author = {C. Carton-Lebrun},
     title = {Integral operators and weighted amalgams},
     journal = {Studia Mathematica},
     pages = {133--157},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {1994},
     doi = {10.4064/sm-109-2-133-157},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-133-157/}
}
TY  - JOUR
AU  - C. Carton-Lebrun
TI  - Integral operators and weighted amalgams
JO  - Studia Mathematica
PY  - 1994
SP  - 133
EP  - 157
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-133-157/
DO  - 10.4064/sm-109-2-133-157
LA  - en
ID  - 10_4064_sm_109_2_133_157
ER  - 
%0 Journal Article
%A C. Carton-Lebrun
%T Integral operators and weighted amalgams
%J Studia Mathematica
%D 1994
%P 133-157
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-133-157/
%R 10.4064/sm-109-2-133-157
%G en
%F 10_4064_sm_109_2_133_157
C. Carton-Lebrun. Integral operators and weighted amalgams. Studia Mathematica, Tome 109 (1994) no. 2, pp. 133-157. doi: 10.4064/sm-109-2-133-157

Cité par Sources :