On certain nonstandard Calderón-Zygmund operators
Studia Mathematica, Tome 109 (1994) no. 2, pp. 105-131
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We formulate a version of the T1 theorem which enables us to treat singular integrals whose kernels need not satisfy the usual smoothness conditions. We also prove a weighted version. As an application of the general theory, we consider a class of multilinear singular integrals in $ℝ^n$ related to the first Calderón commutator, but with a kernel which is far less regular.
@article{10_4064_sm_109_2_105_131,
author = {Steve Hofmann},
title = {On certain nonstandard {Calder\'on-Zygmund} operators},
journal = {Studia Mathematica},
pages = {105--131},
publisher = {mathdoc},
volume = {109},
number = {2},
year = {1994},
doi = {10.4064/sm-109-2-105-131},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-105-131/}
}
TY - JOUR AU - Steve Hofmann TI - On certain nonstandard Calderón-Zygmund operators JO - Studia Mathematica PY - 1994 SP - 105 EP - 131 VL - 109 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-2-105-131/ DO - 10.4064/sm-109-2-105-131 LA - en ID - 10_4064_sm_109_2_105_131 ER -
Steve Hofmann. On certain nonstandard Calderón-Zygmund operators. Studia Mathematica, Tome 109 (1994) no. 2, pp. 105-131. doi: 10.4064/sm-109-2-105-131
Cité par Sources :