Compactness of Hardy-type integral operators in weighted Banach function spaces
Studia Mathematica, Tome 109 (1994) no. 1, pp. 73-90

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a generalized Hardy operator $Tf(x) = ϕ(x) ʃ_{0}^{x} ψfv$. For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition $ℬ = sup_{R>0} ∥ϕχ_{(R,∞)}∥_{Y}∥ψχ_{(0,R)}∥_{X'} ∞$ be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into M (T).
DOI : 10.4064/sm-109-1-73-90
Keywords: weighted Banach function space, Hardy-type operator, compact operator, Lorentz space

David E. Edmunds 1 ;  1 ;  1

1
@article{10_4064_sm_109_1_73_90,
     author = {David E. Edmunds and   and  },
     title = {Compactness of {Hardy-type} integral operators in weighted {Banach} function spaces},
     journal = {Studia Mathematica},
     pages = {73--90},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-109-1-73-90},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-73-90/}
}
TY  - JOUR
AU  - David E. Edmunds
AU  -  
AU  -  
TI  - Compactness of Hardy-type integral operators in weighted Banach function spaces
JO  - Studia Mathematica
PY  - 1994
SP  - 73
EP  - 90
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-73-90/
DO  - 10.4064/sm-109-1-73-90
LA  - en
ID  - 10_4064_sm_109_1_73_90
ER  - 
%0 Journal Article
%A David E. Edmunds
%A  
%A  
%T Compactness of Hardy-type integral operators in weighted Banach function spaces
%J Studia Mathematica
%D 1994
%P 73-90
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-73-90/
%R 10.4064/sm-109-1-73-90
%G en
%F 10_4064_sm_109_1_73_90
David E. Edmunds;  ;  . Compactness of Hardy-type integral operators in weighted Banach function spaces. Studia Mathematica, Tome 109 (1994) no. 1, pp. 73-90. doi: 10.4064/sm-109-1-73-90

Cité par Sources :