Compactness of Hardy-type integral operators in weighted Banach function spaces
Studia Mathematica, Tome 109 (1994) no. 1, pp. 73-90
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider a generalized Hardy operator $Tf(x) = ϕ(x) ʃ_{0}^{x} ψfv$. For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition $ℬ = sup_{R>0} ∥ϕχ_{(R,∞)}∥_{Y}∥ψχ_{(0,R)}∥_{X'} ∞$ be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into M (T).
Keywords:
weighted Banach function space, Hardy-type operator, compact operator, Lorentz space
@article{10_4064_sm_109_1_73_90,
author = {David E. Edmunds and and },
title = {Compactness of {Hardy-type} integral operators in weighted {Banach} function spaces},
journal = {Studia Mathematica},
pages = {73--90},
year = {1994},
volume = {109},
number = {1},
doi = {10.4064/sm-109-1-73-90},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-73-90/}
}
TY - JOUR AU - David E. Edmunds AU - AU - TI - Compactness of Hardy-type integral operators in weighted Banach function spaces JO - Studia Mathematica PY - 1994 SP - 73 EP - 90 VL - 109 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-73-90/ DO - 10.4064/sm-109-1-73-90 LA - en ID - 10_4064_sm_109_1_73_90 ER -
David E. Edmunds; ; . Compactness of Hardy-type integral operators in weighted Banach function spaces. Studia Mathematica, Tome 109 (1994) no. 1, pp. 73-90. doi: 10.4064/sm-109-1-73-90
Cité par Sources :