Compactness of Hardy-type integral operators in weighted Banach function spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 109 (1994) no. 1, pp. 73-90
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We consider a generalized Hardy operator $Tf(x) = ϕ(x) ʃ_{0}^{x} ψfv$. For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition $ℬ = sup_{R>0} ∥ϕχ_{(R,∞)}∥_{Y}∥ψχ_{(0,R)}∥_{X'}  ∞$ be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into M (T).
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
weighted Banach function space, Hardy-type operator, compact operator, Lorentz space
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              David E. Edmunds 1 ;  1 ;  1
@article{10_4064_sm_109_1_73_90,
     author = {David E. Edmunds and   and  },
     title = {Compactness of {Hardy-type} integral operators in weighted {Banach} function spaces},
     journal = {Studia Mathematica},
     pages = {73--90},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-109-1-73-90},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-73-90/}
}
                      
                      
                    TY - JOUR AU - David E. Edmunds AU - AU - TI - Compactness of Hardy-type integral operators in weighted Banach function spaces JO - Studia Mathematica PY - 1994 SP - 73 EP - 90 VL - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-73-90/ DO - 10.4064/sm-109-1-73-90 LA - en ID - 10_4064_sm_109_1_73_90 ER -
%0 Journal Article %A David E. Edmunds %A %A %T Compactness of Hardy-type integral operators in weighted Banach function spaces %J Studia Mathematica %D 1994 %P 73-90 %V 109 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-73-90/ %R 10.4064/sm-109-1-73-90 %G en %F 10_4064_sm_109_1_73_90
David E. Edmunds; ; . Compactness of Hardy-type integral operators in weighted Banach function spaces. Studia Mathematica, Tome 109 (1994) no. 1, pp. 73-90. doi: 10.4064/sm-109-1-73-90
Cité par Sources :