Some spectral inequalities involving generalized scalar operators
Studia Mathematica, Tome 109 (1994) no. 1, pp. 51-66
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In 1971, Allan Sinclair proved that for a hermitian element h of a Banach algebra and λ complex we have ∥λ + h∥ = r(λ + h), where r denotes the spectral radius. Using Levin's subordination theory for entire functions of exponential type, we extend this result locally to a much larger class of generalized spectral operators. This fundamental result improves many earlier results due to Gelfand, Hille, Colojoară-Foiaş, Vidav, Dowson, Dowson-Gillespie-Spain, Crabb-Spain, I. V. Istrăţescu, Barnes, Pytlik, Boyadzhiev and others.
@article{10_4064_sm_109_1_51_66,
author = {B. Aupetit},
title = {Some spectral inequalities involving generalized scalar operators},
journal = {Studia Mathematica},
pages = {51--66},
year = {1994},
volume = {109},
number = {1},
doi = {10.4064/sm-109-1-51-66},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-51-66/}
}
B. Aupetit. Some spectral inequalities involving generalized scalar operators. Studia Mathematica, Tome 109 (1994) no. 1, pp. 51-66. doi: 10.4064/sm-109-1-51-66
Cité par Sources :