Some spectral inequalities involving generalized scalar operators
Studia Mathematica, Tome 109 (1994) no. 1, pp. 51-66

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In 1971, Allan Sinclair proved that for a hermitian element h of a Banach algebra and λ complex we have ∥λ + h∥ = r(λ + h), where r denotes the spectral radius. Using Levin's subordination theory for entire functions of exponential type, we extend this result locally to a much larger class of generalized spectral operators. This fundamental result improves many earlier results due to Gelfand, Hille, Colojoară-Foiaş, Vidav, Dowson, Dowson-Gillespie-Spain, Crabb-Spain, I. V. Istrăţescu, Barnes, Pytlik, Boyadzhiev and others.
DOI : 10.4064/sm-109-1-51-66

B. Aupetit 1

1
@article{10_4064_sm_109_1_51_66,
     author = {B. Aupetit},
     title = {Some spectral inequalities involving generalized scalar operators},
     journal = {Studia Mathematica},
     pages = {51--66},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-109-1-51-66},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-51-66/}
}
TY  - JOUR
AU  - B. Aupetit
TI  - Some spectral inequalities involving generalized scalar operators
JO  - Studia Mathematica
PY  - 1994
SP  - 51
EP  - 66
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-51-66/
DO  - 10.4064/sm-109-1-51-66
LA  - en
ID  - 10_4064_sm_109_1_51_66
ER  - 
%0 Journal Article
%A B. Aupetit
%T Some spectral inequalities involving generalized scalar operators
%J Studia Mathematica
%D 1994
%P 51-66
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-51-66/
%R 10.4064/sm-109-1-51-66
%G en
%F 10_4064_sm_109_1_51_66
B. Aupetit. Some spectral inequalities involving generalized scalar operators. Studia Mathematica, Tome 109 (1994) no. 1, pp. 51-66. doi: 10.4064/sm-109-1-51-66

Cité par Sources :