Some spectral inequalities involving generalized scalar operators
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 109 (1994) no. 1, pp. 51-66
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              In 1971, Allan Sinclair proved that for a hermitian element h of a Banach algebra and λ complex we have ∥λ + h∥ = r(λ + h), where r denotes the spectral radius. Using Levin's subordination theory for entire functions of exponential type, we extend this result locally to a much larger class of generalized spectral operators. This fundamental result improves many earlier results due to Gelfand, Hille, Colojoară-Foiaş, Vidav, Dowson, Dowson-Gillespie-Spain, Crabb-Spain, I.  V. Istrăţescu, Barnes, Pytlik, Boyadzhiev and others.
            
            
            
          
        
      @article{10_4064_sm_109_1_51_66,
     author = {B. Aupetit},
     title = {Some spectral inequalities involving generalized scalar operators},
     journal = {Studia Mathematica},
     pages = {51--66},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-109-1-51-66},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-51-66/}
}
                      
                      
                    TY - JOUR AU - B. Aupetit TI - Some spectral inequalities involving generalized scalar operators JO - Studia Mathematica PY - 1994 SP - 51 EP - 66 VL - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-51-66/ DO - 10.4064/sm-109-1-51-66 LA - en ID - 10_4064_sm_109_1_51_66 ER -
B. Aupetit. Some spectral inequalities involving generalized scalar operators. Studia Mathematica, Tome 109 (1994) no. 1, pp. 51-66. doi: 10.4064/sm-109-1-51-66
Cité par Sources :