On the best constant in the Khinchin-Kahane inequality
Studia Mathematica, Tome 109 (1994) no. 1, pp. 101-104

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if $r_i$ is the Rademacher system of functions then $(ʃ ∥∑_{i=1}^{n} x_{i}r_{i}(t)∥^2 dt)^{1/2} ≤ √2 ʃ ∥∑_{i=1}^{n}x_{i}r_{i}(t)∥dt$ for any sequence of vectors $x_i$ in any normed linear space F.
DOI : 10.4064/sm-109-1-101-104

Rafał Latała 1 ;  1

1
@article{10_4064_sm_109_1_101_104,
     author = {Rafa{\l} Lata{\l}a and  },
     title = {On the best constant in the {Khinchin-Kahane} inequality},
     journal = {Studia Mathematica},
     pages = {101--104},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-109-1-101-104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-101-104/}
}
TY  - JOUR
AU  - Rafał Latała
AU  -  
TI  - On the best constant in the Khinchin-Kahane inequality
JO  - Studia Mathematica
PY  - 1994
SP  - 101
EP  - 104
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-101-104/
DO  - 10.4064/sm-109-1-101-104
LA  - en
ID  - 10_4064_sm_109_1_101_104
ER  - 
%0 Journal Article
%A Rafał Latała
%A  
%T On the best constant in the Khinchin-Kahane inequality
%J Studia Mathematica
%D 1994
%P 101-104
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-101-104/
%R 10.4064/sm-109-1-101-104
%G en
%F 10_4064_sm_109_1_101_104
Rafał Latała;  . On the best constant in the Khinchin-Kahane inequality. Studia Mathematica, Tome 109 (1994) no. 1, pp. 101-104. doi: 10.4064/sm-109-1-101-104

Cité par Sources :