On the best constant in the Khinchin-Kahane inequality
Studia Mathematica, Tome 109 (1994) no. 1, pp. 101-104
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if $r_i$ is the Rademacher system of functions then $(ʃ ∥∑_{i=1}^{n} x_{i}r_{i}(t)∥^2 dt)^{1/2} ≤ √2 ʃ ∥∑_{i=1}^{n}x_{i}r_{i}(t)∥dt$ for any sequence of vectors $x_i$ in any normed linear space F.
@article{10_4064_sm_109_1_101_104,
author = {Rafa{\l} Lata{\l}a and },
title = {On the best constant in the {Khinchin-Kahane} inequality},
journal = {Studia Mathematica},
pages = {101--104},
publisher = {mathdoc},
volume = {109},
number = {1},
year = {1994},
doi = {10.4064/sm-109-1-101-104},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-101-104/}
}
TY - JOUR AU - Rafał Latała AU - TI - On the best constant in the Khinchin-Kahane inequality JO - Studia Mathematica PY - 1994 SP - 101 EP - 104 VL - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-1-101-104/ DO - 10.4064/sm-109-1-101-104 LA - en ID - 10_4064_sm_109_1_101_104 ER -
Rafał Latała; . On the best constant in the Khinchin-Kahane inequality. Studia Mathematica, Tome 109 (1994) no. 1, pp. 101-104. doi: 10.4064/sm-109-1-101-104
Cité par Sources :