Triebel-Lizorkin spaces on spaces of homogeneous type
Studia Mathematica, Tome 108 (1994) no. 3, pp. 247-273
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In [HS] the Besov and Triebel-Lizorkin spaces on spaces of homogeneous type were introduced. In this paper, the Triebel-Lizorkin spaces on spaces of homogeneous type are generalized to the case where $p_0 p ≤ 1 ≤ q ∞$, and a new atomic decomposition for these spaces is obtained. As a consequence, we give the Littlewood-Paley characterization of Hardy spaces on spaces of homogeneous type which were introduced by the maximal function characterization in [MS2].
Keywords:
spaces of homogeneous type, $H^p$ and Triebel-Lizorkin spaces, Littlewood-Paley S-function, atomic decomposition
@article{10_4064_sm_108_3_247_273,
author = {Y.-S Han},
title = {Triebel-Lizorkin spaces on spaces of homogeneous type},
journal = {Studia Mathematica},
pages = {247--273},
year = {1994},
volume = {108},
number = {3},
doi = {10.4064/sm-108-3-247-273},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-3-247-273/}
}
Y.-S Han. Triebel-Lizorkin spaces on spaces of homogeneous type. Studia Mathematica, Tome 108 (1994) no. 3, pp. 247-273. doi: 10.4064/sm-108-3-247-273
Cité par Sources :