Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type
Studia Mathematica, Tome 108 (1994) no. 3, pp. 201-207

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a characterization of the pairs of weights (v,w), with w in the class $A_∞$ of Muckenhoupt, for which the fractional maximal function is a bounded operator from $L^p(X,vdμ)$ to $L^q(X,wdμ)$ when 1 p ≤ q ∞ and X is a space of homogeneous type.
DOI : 10.4064/sm-108-3-201-207

Ana Bernardis 1

1
@article{10_4064_sm_108_3_201_207,
     author = {Ana Bernardis},
     title = {Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type},
     journal = {Studia Mathematica},
     pages = {201--207},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {1994},
     doi = {10.4064/sm-108-3-201-207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-3-201-207/}
}
TY  - JOUR
AU  - Ana Bernardis
TI  - Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type
JO  - Studia Mathematica
PY  - 1994
SP  - 201
EP  - 207
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-108-3-201-207/
DO  - 10.4064/sm-108-3-201-207
LA  - en
ID  - 10_4064_sm_108_3_201_207
ER  - 
%0 Journal Article
%A Ana Bernardis
%T Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type
%J Studia Mathematica
%D 1994
%P 201-207
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-108-3-201-207/
%R 10.4064/sm-108-3-201-207
%G en
%F 10_4064_sm_108_3_201_207
Ana Bernardis. Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type. Studia Mathematica, Tome 108 (1994) no. 3, pp. 201-207. doi: 10.4064/sm-108-3-201-207

Cité par Sources :