Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type
Studia Mathematica, Tome 108 (1994) no. 3, pp. 201-207
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give a characterization of the pairs of weights (v,w), with w in the class $A_∞$ of Muckenhoupt, for which the fractional maximal function is a bounded operator from $L^p(X,vdμ)$ to $L^q(X,wdμ)$ when 1 p ≤ q ∞ and X is a space of homogeneous type.
@article{10_4064_sm_108_3_201_207,
author = {Ana Bernardis},
title = {Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type},
journal = {Studia Mathematica},
pages = {201--207},
publisher = {mathdoc},
volume = {108},
number = {3},
year = {1994},
doi = {10.4064/sm-108-3-201-207},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-3-201-207/}
}
TY - JOUR AU - Ana Bernardis TI - Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type JO - Studia Mathematica PY - 1994 SP - 201 EP - 207 VL - 108 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-108-3-201-207/ DO - 10.4064/sm-108-3-201-207 LA - en ID - 10_4064_sm_108_3_201_207 ER -
%0 Journal Article %A Ana Bernardis %T Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type %J Studia Mathematica %D 1994 %P 201-207 %V 108 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-108-3-201-207/ %R 10.4064/sm-108-3-201-207 %G en %F 10_4064_sm_108_3_201_207
Ana Bernardis. Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type. Studia Mathematica, Tome 108 (1994) no. 3, pp. 201-207. doi: 10.4064/sm-108-3-201-207
Cité par Sources :