Weighted integrability and L¹-convergence of multiple trigonometric series
Studia Mathematica, Tome 108 (1994) no. 2, pp. 177-190
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if $c_{jk} → 0$ as max(|j|,|k|) → ∞, and $∑^∞_{|j|=0±} ∑^∞_{|k|=0±} θ(|j|^⊤)ϑ(|k|^⊤)|Δ_{12}c_{jk}| ∞$, then f(x,y)ϕ(x)ψ(y) ∈ L¹(T²) and $∬_{T²} |s_{mn}(x,y) - f(x,y)|·|ϕ(x)ψ(y)|dxdy → 0$ as min(m,n) → ∞, where f(x,y) is the limiting function of the rectangular partial sums $s_{mn}(x,y)$, (ϕ,θ) and (ψ,ϑ) are pairs of type I. A generalization of this result concerning L¹-convergence is also established. Extensions of these results to double series of orthogonal functions are also considered. These results can be extended to n-dimensional case. The aforementioned results generalize work of Balashov [1], Boas [2], Chen [3,4,5], Marzuq [9], Móricz [11], Móricz-Schipp-Wade [14], and Young [16].
Keywords:
multiple trigonometric series, rectangular partial sums, Cesàro means, weighted integrability, L¹-convergence, conditions of generalized bounded variation
Affiliations des auteurs :
Chang-Pao Chen 1
@article{10_4064_sm_108_2_177_190,
author = {Chang-Pao Chen},
title = {Weighted integrability and {L{\textonesuperior}-convergence} of multiple trigonometric series},
journal = {Studia Mathematica},
pages = {177--190},
publisher = {mathdoc},
volume = {108},
number = {2},
year = {1994},
doi = {10.4064/sm-108-2-177-190},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-2-177-190/}
}
TY - JOUR AU - Chang-Pao Chen TI - Weighted integrability and L¹-convergence of multiple trigonometric series JO - Studia Mathematica PY - 1994 SP - 177 EP - 190 VL - 108 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-108-2-177-190/ DO - 10.4064/sm-108-2-177-190 LA - en ID - 10_4064_sm_108_2_177_190 ER -
%0 Journal Article %A Chang-Pao Chen %T Weighted integrability and L¹-convergence of multiple trigonometric series %J Studia Mathematica %D 1994 %P 177-190 %V 108 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-108-2-177-190/ %R 10.4064/sm-108-2-177-190 %G en %F 10_4064_sm_108_2_177_190
Chang-Pao Chen. Weighted integrability and L¹-convergence of multiple trigonometric series. Studia Mathematica, Tome 108 (1994) no. 2, pp. 177-190. doi: 10.4064/sm-108-2-177-190
Cité par Sources :