Weighted integrability and L¹-convergence of multiple trigonometric series
Studia Mathematica, Tome 108 (1994) no. 2, pp. 177-190

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if $c_{jk} → 0$ as max(|j|,|k|) → ∞, and $∑^∞_{|j|=0±} ∑^∞_{|k|=0±} θ(|j|^⊤)ϑ(|k|^⊤)|Δ_{12}c_{jk}| ∞$, then f(x,y)ϕ(x)ψ(y) ∈ L¹(T²) and $∬_{T²} |s_{mn}(x,y) - f(x,y)|·|ϕ(x)ψ(y)|dxdy → 0$ as min(m,n) → ∞, where f(x,y) is the limiting function of the rectangular partial sums $s_{mn}(x,y)$, (ϕ,θ) and (ψ,ϑ) are pairs of type I. A generalization of this result concerning L¹-convergence is also established. Extensions of these results to double series of orthogonal functions are also considered. These results can be extended to n-dimensional case. The aforementioned results generalize work of Balashov [1], Boas [2], Chen [3,4,5], Marzuq [9], Móricz [11], Móricz-Schipp-Wade [14], and Young [16].
DOI : 10.4064/sm-108-2-177-190
Keywords: multiple trigonometric series, rectangular partial sums, Cesàro means, weighted integrability, L¹-convergence, conditions of generalized bounded variation

Chang-Pao Chen 1

1
@article{10_4064_sm_108_2_177_190,
     author = {Chang-Pao Chen},
     title = {Weighted integrability and {L{\textonesuperior}-convergence} of multiple trigonometric series},
     journal = {Studia Mathematica},
     pages = {177--190},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {1994},
     doi = {10.4064/sm-108-2-177-190},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-2-177-190/}
}
TY  - JOUR
AU  - Chang-Pao Chen
TI  - Weighted integrability and L¹-convergence of multiple trigonometric series
JO  - Studia Mathematica
PY  - 1994
SP  - 177
EP  - 190
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-108-2-177-190/
DO  - 10.4064/sm-108-2-177-190
LA  - en
ID  - 10_4064_sm_108_2_177_190
ER  - 
%0 Journal Article
%A Chang-Pao Chen
%T Weighted integrability and L¹-convergence of multiple trigonometric series
%J Studia Mathematica
%D 1994
%P 177-190
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-108-2-177-190/
%R 10.4064/sm-108-2-177-190
%G en
%F 10_4064_sm_108_2_177_190
Chang-Pao Chen. Weighted integrability and L¹-convergence of multiple trigonometric series. Studia Mathematica, Tome 108 (1994) no. 2, pp. 177-190. doi: 10.4064/sm-108-2-177-190

Cité par Sources :