Convolution algebras with weighted rearrangement-invariant norm
Studia Mathematica, Tome 108 (1994) no. 2, pp. 103-126

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be a rearrangement-invariant space of Lebesgue-measurable functions on $ℝ^n$, such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on $ℝ^n$, define $X(w) = {F: ℝ^n → ℂ: ∞ > ∥F∥_{X(w)} := ∥Fw∥_X}$. We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at $x ∈ ℝ^n$ by $(F∗G)(x) = ʃ_{ℝ^n} F(x-y)G(y)dy$; more precisely, when $∥F∗G∥_{X(w)} ≤ ∥F∥_{X(w)} ∥G∥_{X(w)}$ for all F,G ∈ X(w).
DOI : 10.4064/sm-108-2-103-126

R. Kerman 1 ; E Sawyer 1

1
@article{10_4064_sm_108_2_103_126,
     author = {R. Kerman and E Sawyer},
     title = {Convolution algebras with weighted rearrangement-invariant norm},
     journal = {Studia Mathematica},
     pages = {103--126},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {1994},
     doi = {10.4064/sm-108-2-103-126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-2-103-126/}
}
TY  - JOUR
AU  - R. Kerman
AU  - E Sawyer
TI  - Convolution algebras with weighted rearrangement-invariant norm
JO  - Studia Mathematica
PY  - 1994
SP  - 103
EP  - 126
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-108-2-103-126/
DO  - 10.4064/sm-108-2-103-126
LA  - en
ID  - 10_4064_sm_108_2_103_126
ER  - 
%0 Journal Article
%A R. Kerman
%A E Sawyer
%T Convolution algebras with weighted rearrangement-invariant norm
%J Studia Mathematica
%D 1994
%P 103-126
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-108-2-103-126/
%R 10.4064/sm-108-2-103-126
%G en
%F 10_4064_sm_108_2_103_126
R. Kerman; E Sawyer. Convolution algebras with weighted rearrangement-invariant norm. Studia Mathematica, Tome 108 (1994) no. 2, pp. 103-126. doi: 10.4064/sm-108-2-103-126

Cité par Sources :