Convolution algebras with weighted rearrangement-invariant norm
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 108 (1994) no. 2, pp. 103-126
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let X be a rearrangement-invariant space of Lebesgue-measurable functions on $ℝ^n$, such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on $ℝ^n$, define $X(w) = {F: ℝ^n → ℂ: ∞ > ∥F∥_{X(w)} := ∥Fw∥_X}$. We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at $x ∈ ℝ^n$ by $(F∗G)(x) = ʃ_{ℝ^n} F(x-y)G(y)dy$; more precisely, when $∥F∗G∥_{X(w)} ≤ ∥F∥_{X(w)} ∥G∥_{X(w)}$ for all F,G ∈ X(w).
            
            
            
          
        
      @article{10_4064_sm_108_2_103_126,
     author = {R. Kerman and E Sawyer},
     title = {Convolution algebras with weighted rearrangement-invariant norm},
     journal = {Studia Mathematica},
     pages = {103--126},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {1994},
     doi = {10.4064/sm-108-2-103-126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-2-103-126/}
}
                      
                      
                    TY - JOUR AU - R. Kerman AU - E Sawyer TI - Convolution algebras with weighted rearrangement-invariant norm JO - Studia Mathematica PY - 1994 SP - 103 EP - 126 VL - 108 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-108-2-103-126/ DO - 10.4064/sm-108-2-103-126 LA - en ID - 10_4064_sm_108_2_103_126 ER -
%0 Journal Article %A R. Kerman %A E Sawyer %T Convolution algebras with weighted rearrangement-invariant norm %J Studia Mathematica %D 1994 %P 103-126 %V 108 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-108-2-103-126/ %R 10.4064/sm-108-2-103-126 %G en %F 10_4064_sm_108_2_103_126
R. Kerman; E Sawyer. Convolution algebras with weighted rearrangement-invariant norm. Studia Mathematica, Tome 108 (1994) no. 2, pp. 103-126. doi: 10.4064/sm-108-2-103-126
Cité par Sources :