Spectrum of multidimensional dynamical systems with positive entropy
Studia Mathematica, Tome 108 (1994) no. 1, pp. 77-85

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Applying methods of harmonic analysis we give a simple proof of the multidimensional version of the Rokhlin-Sinaǐ theorem which states that a Kolmogorov $ℤ^d$-action on a Lebesgue space has a countable Lebesgue spectrum. At the same time we extend this theorem to $ℤ^∞$-actions. Next, using its relative version, we extend to $ℤ^∞$-actions some other general results connecting spectrum and entropy.
DOI : 10.4064/sm-108-1-77-85

B. Kamiński 1

1
@article{10_4064_sm_108_1_77_85,
     author = {B. Kami\'nski},
     title = {Spectrum of multidimensional dynamical systems with positive entropy},
     journal = {Studia Mathematica},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-108-1-77-85},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-77-85/}
}
TY  - JOUR
AU  - B. Kamiński
TI  - Spectrum of multidimensional dynamical systems with positive entropy
JO  - Studia Mathematica
PY  - 1994
SP  - 77
EP  - 85
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-77-85/
DO  - 10.4064/sm-108-1-77-85
LA  - en
ID  - 10_4064_sm_108_1_77_85
ER  - 
%0 Journal Article
%A B. Kamiński
%T Spectrum of multidimensional dynamical systems with positive entropy
%J Studia Mathematica
%D 1994
%P 77-85
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-77-85/
%R 10.4064/sm-108-1-77-85
%G en
%F 10_4064_sm_108_1_77_85
B. Kamiński. Spectrum of multidimensional dynamical systems with positive entropy. Studia Mathematica, Tome 108 (1994) no. 1, pp. 77-85. doi: 10.4064/sm-108-1-77-85

Cité par Sources :