Spectrum of multidimensional dynamical systems with positive entropy
Studia Mathematica, Tome 108 (1994) no. 1, pp. 77-85
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Applying methods of harmonic analysis we give a simple proof of the multidimensional version of the Rokhlin-Sinaǐ theorem which states that a Kolmogorov $ℤ^d$-action on a Lebesgue space has a countable Lebesgue spectrum. At the same time we extend this theorem to $ℤ^∞$-actions. Next, using its relative version, we extend to $ℤ^∞$-actions some other general results connecting spectrum and entropy.
@article{10_4064_sm_108_1_77_85,
author = {B. Kami\'nski},
title = {Spectrum of multidimensional dynamical systems with positive entropy},
journal = {Studia Mathematica},
pages = {77--85},
publisher = {mathdoc},
volume = {108},
number = {1},
year = {1994},
doi = {10.4064/sm-108-1-77-85},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-77-85/}
}
TY - JOUR AU - B. Kamiński TI - Spectrum of multidimensional dynamical systems with positive entropy JO - Studia Mathematica PY - 1994 SP - 77 EP - 85 VL - 108 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-77-85/ DO - 10.4064/sm-108-1-77-85 LA - en ID - 10_4064_sm_108_1_77_85 ER -
B. Kamiński. Spectrum of multidimensional dynamical systems with positive entropy. Studia Mathematica, Tome 108 (1994) no. 1, pp. 77-85. doi: 10.4064/sm-108-1-77-85
Cité par Sources :