Unique continuation for elliptic equations and an abstract differential inequality
Studia Mathematica, Tome 108 (1994) no. 1, pp. 5-20
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a class of elliptic equations whose leading part is the Laplacian and for which the singularities of the coefficients of lower order terms are described by a mixed $L^p$-norm. We prove that the zeros of the solutions are of at most finite order in the sense of a spherical L²-mean.
@article{10_4064_sm_108_1_5_20,
author = {K. Senator},
title = {Unique continuation for elliptic equations and an abstract differential inequality},
journal = {Studia Mathematica},
pages = {5--20},
publisher = {mathdoc},
volume = {108},
number = {1},
year = {1994},
doi = {10.4064/sm-108-1-5-20},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-5-20/}
}
TY - JOUR AU - K. Senator TI - Unique continuation for elliptic equations and an abstract differential inequality JO - Studia Mathematica PY - 1994 SP - 5 EP - 20 VL - 108 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-5-20/ DO - 10.4064/sm-108-1-5-20 LA - en ID - 10_4064_sm_108_1_5_20 ER -
K. Senator. Unique continuation for elliptic equations and an abstract differential inequality. Studia Mathematica, Tome 108 (1994) no. 1, pp. 5-20. doi: 10.4064/sm-108-1-5-20
Cité par Sources :