Operators on spaces of analytic functions
Studia Mathematica, Tome 108 (1994) no. 1, pp. 49-54
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $M_z$ be the operator of multiplication by z on a Banach space of functions analytic on a plane domain G. We say that $M_z$ is polynomially bounded if $∥M_p∥ ≤ C∥p∥_G$ for every polynomial p. We give necessary and sufficient conditions for $M_z$ to be polynomially bounded. We also characterize the finite-codimensional invariant subspaces and derive some spectral properties of the multiplication operator in case the underlying space is Hilbert.
Keywords:
spaces of analytic functions, polynomially bounded, multipliers, spectral properties, cyclic subspace
Affiliations des auteurs :
K. Seddighi 1
@article{10_4064_sm_108_1_49_54,
author = {K. Seddighi},
title = {Operators on spaces of analytic functions},
journal = {Studia Mathematica},
pages = {49--54},
publisher = {mathdoc},
volume = {108},
number = {1},
year = {1994},
doi = {10.4064/sm-108-1-49-54},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-49-54/}
}
K. Seddighi. Operators on spaces of analytic functions. Studia Mathematica, Tome 108 (1994) no. 1, pp. 49-54. doi: 10.4064/sm-108-1-49-54
Cité par Sources :