Operators on spaces of analytic functions
Studia Mathematica, Tome 108 (1994) no. 1, pp. 49-54

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M_z$ be the operator of multiplication by z on a Banach space of functions analytic on a plane domain G. We say that $M_z$ is polynomially bounded if $∥M_p∥ ≤ C∥p∥_G$ for every polynomial p. We give necessary and sufficient conditions for $M_z$ to be polynomially bounded. We also characterize the finite-codimensional invariant subspaces and derive some spectral properties of the multiplication operator in case the underlying space is Hilbert.
DOI : 10.4064/sm-108-1-49-54
Keywords: spaces of analytic functions, polynomially bounded, multipliers, spectral properties, cyclic subspace

K. Seddighi 1

1
@article{10_4064_sm_108_1_49_54,
     author = {K. Seddighi},
     title = {Operators on spaces of analytic functions},
     journal = {Studia Mathematica},
     pages = {49--54},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-108-1-49-54},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-49-54/}
}
TY  - JOUR
AU  - K. Seddighi
TI  - Operators on spaces of analytic functions
JO  - Studia Mathematica
PY  - 1994
SP  - 49
EP  - 54
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-49-54/
DO  - 10.4064/sm-108-1-49-54
LA  - en
ID  - 10_4064_sm_108_1_49_54
ER  - 
%0 Journal Article
%A K. Seddighi
%T Operators on spaces of analytic functions
%J Studia Mathematica
%D 1994
%P 49-54
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-49-54/
%R 10.4064/sm-108-1-49-54
%G en
%F 10_4064_sm_108_1_49_54
K. Seddighi. Operators on spaces of analytic functions. Studia Mathematica, Tome 108 (1994) no. 1, pp. 49-54. doi: 10.4064/sm-108-1-49-54

Cité par Sources :