Boundary behavior of subharmonic functions in nontangential accessible domains
Studia Mathematica, Tome 108 (1994) no. 1, pp. 25-48

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The following results concerning boundary behavior of subharmonic functions in the unit ball of $ℝ^n$ are generalized to nontangential accessible domains in the sense of Jerison and Kenig [7]: (i) The classical theorem of Littlewood on the radial limits. (ii) Ziomek's theorem on the $L^p$-nontangential limits. (iii) The localized version of the above two results and nontangential limits of Green potentials under a certain nontangential condition.
DOI : 10.4064/sm-108-1-25-48
Keywords: subharmonic function, Green potential, boundary limit, NTA domain

Shiying Zhao 1

1
@article{10_4064_sm_108_1_25_48,
     author = {Shiying Zhao},
     title = {Boundary behavior of subharmonic functions in nontangential accessible domains},
     journal = {Studia Mathematica},
     pages = {25--48},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-108-1-25-48},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-25-48/}
}
TY  - JOUR
AU  - Shiying Zhao
TI  - Boundary behavior of subharmonic functions in nontangential accessible domains
JO  - Studia Mathematica
PY  - 1994
SP  - 25
EP  - 48
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-25-48/
DO  - 10.4064/sm-108-1-25-48
LA  - en
ID  - 10_4064_sm_108_1_25_48
ER  - 
%0 Journal Article
%A Shiying Zhao
%T Boundary behavior of subharmonic functions in nontangential accessible domains
%J Studia Mathematica
%D 1994
%P 25-48
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-108-1-25-48/
%R 10.4064/sm-108-1-25-48
%G en
%F 10_4064_sm_108_1_25_48
Shiying Zhao. Boundary behavior of subharmonic functions in nontangential accessible domains. Studia Mathematica, Tome 108 (1994) no. 1, pp. 25-48. doi: 10.4064/sm-108-1-25-48

Cité par Sources :