Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces
Studia Mathematica, Tome 107 (1993) no. 3, pp. 305-315

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For U open in a locally convex space E it is shown in [31] that there is a complete locally convex space G(U) such that $G(U)'_i = (ℋ (U),τ_δ)$. Here, we assume U is balanced open in a Fréchet space and give necessary and sufficient conditions for G(U) to be Montel and reflexive. These results give an insight into the relationship between the $τ_0$ and $τ_ω$ topologies on ℋ (U).
DOI : 10.4064/sm-107-3-305-315

Christopher Boyd 1

1
@article{10_4064_sm_107_3_305_315,
     author = {Christopher Boyd},
     title = {Montel and reflexive preduals of spaces of holomorphic functions on {Fr\'echet} spaces},
     journal = {Studia Mathematica},
     pages = {305--315},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {1993},
     doi = {10.4064/sm-107-3-305-315},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-107-3-305-315/}
}
TY  - JOUR
AU  - Christopher Boyd
TI  - Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces
JO  - Studia Mathematica
PY  - 1993
SP  - 305
EP  - 315
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-107-3-305-315/
DO  - 10.4064/sm-107-3-305-315
LA  - en
ID  - 10_4064_sm_107_3_305_315
ER  - 
%0 Journal Article
%A Christopher Boyd
%T Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces
%J Studia Mathematica
%D 1993
%P 305-315
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-107-3-305-315/
%R 10.4064/sm-107-3-305-315
%G en
%F 10_4064_sm_107_3_305_315
Christopher Boyd. Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces. Studia Mathematica, Tome 107 (1993) no. 3, pp. 305-315. doi: 10.4064/sm-107-3-305-315

Cité par Sources :