Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces
Studia Mathematica, Tome 107 (1993) no. 3, pp. 305-315
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For U open in a locally convex space E it is shown in [31] that there is a complete locally convex space G(U) such that $G(U)'_i = (ℋ (U),τ_δ)$. Here, we assume U is balanced open in a Fréchet space and give necessary and sufficient conditions for G(U) to be Montel and reflexive. These results give an insight into the relationship between the $τ_0$ and $τ_ω$ topologies on ℋ (U).
@article{10_4064_sm_107_3_305_315,
author = {Christopher Boyd},
title = {Montel and reflexive preduals of spaces of holomorphic functions on {Fr\'echet} spaces},
journal = {Studia Mathematica},
pages = {305--315},
year = {1993},
volume = {107},
number = {3},
doi = {10.4064/sm-107-3-305-315},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-107-3-305-315/}
}
TY - JOUR AU - Christopher Boyd TI - Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces JO - Studia Mathematica PY - 1993 SP - 305 EP - 315 VL - 107 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-107-3-305-315/ DO - 10.4064/sm-107-3-305-315 LA - en ID - 10_4064_sm_107_3_305_315 ER -
%0 Journal Article %A Christopher Boyd %T Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces %J Studia Mathematica %D 1993 %P 305-315 %V 107 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-107-3-305-315/ %R 10.4064/sm-107-3-305-315 %G en %F 10_4064_sm_107_3_305_315
Christopher Boyd. Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces. Studia Mathematica, Tome 107 (1993) no. 3, pp. 305-315. doi: 10.4064/sm-107-3-305-315
Cité par Sources :