On first integrals for polynomial differential equations on the line
Studia Mathematica, Tome 107 (1993) no. 2, pp. 205-211
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that any equation dy/dx = P(x,y) with P a polynomial has a global (on ℝ²) smooth first integral nonconstant on any open domain. We also present an example of an equation without an analytic primitive first integral.
@article{10_4064_sm_107_2_205_211,
author = {Henryk \.Zo{\l}\k{a}dek},
title = {On first integrals for polynomial differential equations on the line},
journal = {Studia Mathematica},
pages = {205--211},
publisher = {mathdoc},
volume = {107},
number = {2},
year = {1993},
doi = {10.4064/sm-107-2-205-211},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-107-2-205-211/}
}
TY - JOUR AU - Henryk Żołądek TI - On first integrals for polynomial differential equations on the line JO - Studia Mathematica PY - 1993 SP - 205 EP - 211 VL - 107 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-107-2-205-211/ DO - 10.4064/sm-107-2-205-211 LA - en ID - 10_4064_sm_107_2_205_211 ER -
Henryk Żołądek. On first integrals for polynomial differential equations on the line. Studia Mathematica, Tome 107 (1993) no. 2, pp. 205-211. doi: 10.4064/sm-107-2-205-211
Cité par Sources :