On first integrals for polynomial differential equations on the line
Studia Mathematica, Tome 107 (1993) no. 2, pp. 205-211

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that any equation dy/dx = P(x,y) with P a polynomial has a global (on ℝ²) smooth first integral nonconstant on any open domain. We also present an example of an equation without an analytic primitive first integral.
DOI : 10.4064/sm-107-2-205-211

Henryk Żołądek 1

1
@article{10_4064_sm_107_2_205_211,
     author = {Henryk \.Zo{\l}\k{a}dek},
     title = {On first integrals for polynomial differential equations on the line},
     journal = {Studia Mathematica},
     pages = {205--211},
     publisher = {mathdoc},
     volume = {107},
     number = {2},
     year = {1993},
     doi = {10.4064/sm-107-2-205-211},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-107-2-205-211/}
}
TY  - JOUR
AU  - Henryk Żołądek
TI  - On first integrals for polynomial differential equations on the line
JO  - Studia Mathematica
PY  - 1993
SP  - 205
EP  - 211
VL  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-107-2-205-211/
DO  - 10.4064/sm-107-2-205-211
LA  - en
ID  - 10_4064_sm_107_2_205_211
ER  - 
%0 Journal Article
%A Henryk Żołądek
%T On first integrals for polynomial differential equations on the line
%J Studia Mathematica
%D 1993
%P 205-211
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-107-2-205-211/
%R 10.4064/sm-107-2-205-211
%G en
%F 10_4064_sm_107_2_205_211
Henryk Żołądek. On first integrals for polynomial differential equations on the line. Studia Mathematica, Tome 107 (1993) no. 2, pp. 205-211. doi: 10.4064/sm-107-2-205-211

Cité par Sources :