A partial differential operator which is surjective on Gevrey classes $Γ^{d}(ℝ³)$ with 1 ≤ d 2 and d ≥ 6 but not for 2 ≤ d 6
Studia Mathematica, Tome 107 (1993) no. 2, pp. 157-169
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that the partial differential operator $P(D) = ∂⁴/∂x⁴ - ∂²/∂y² + i∂/∂z : Γ^d(ℝ³) → Γ^d(ℝ³)$ is surjective if 1 ≤ d 2 or d ≥ 6 and not surjective for 2 ≤ d 6.
@article{10_4064_sm_107_2_157_169,
author = {R\"udiger W. Braun},
title = {A partial differential operator which is surjective on {Gevrey} classes $\ensuremath{\Gamma}^{d}(\ensuremath{\mathbb{R}}{\textthreesuperior})$ with 1 \ensuremath{\leq} d < 2 and d \ensuremath{\geq} 6 but not for 2 \ensuremath{\leq} d < 6},
journal = {Studia Mathematica},
pages = {157--169},
publisher = {mathdoc},
volume = {107},
number = {2},
year = {1993},
doi = {10.4064/sm-107-2-157-169},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-107-2-157-169/}
}
TY - JOUR
AU - Rüdiger W. Braun
TI - A partial differential operator which is surjective on Gevrey classes $Γ^{d}(ℝ³)$ with 1 ≤ d < 2 and d ≥ 6 but not for 2 ≤ d < 6
JO - Studia Mathematica
PY - 1993
SP - 157
EP - 169
VL - 107
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-107-2-157-169/
DO - 10.4064/sm-107-2-157-169
LA - en
ID - 10_4064_sm_107_2_157_169
ER -
%0 Journal Article
%A Rüdiger W. Braun
%T A partial differential operator which is surjective on Gevrey classes $Γ^{d}(ℝ³)$ with 1 ≤ d < 2 and d ≥ 6 but not for 2 ≤ d < 6
%J Studia Mathematica
%D 1993
%P 157-169
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-107-2-157-169/
%R 10.4064/sm-107-2-157-169
%G en
%F 10_4064_sm_107_2_157_169
Rüdiger W. Braun. A partial differential operator which is surjective on Gevrey classes $Γ^{d}(ℝ³)$ with 1 ≤ d < 2 and d ≥ 6 but not for 2 ≤ d < 6. Studia Mathematica, Tome 107 (1993) no. 2, pp. 157-169. doi: 10.4064/sm-107-2-157-169
Cité par Sources :