Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm
Studia Mathematica, Tome 107 (1993) no. 1, pp. 61-100

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let E be a Banach space. Let $L¹_{(1)}(ℝ^d,E)$ be the Sobolev space of E-valued functions on $ℝ^d$ with the norm $ʃ_{ℝ^d} ∥f∥_E dx + ʃ_{ℝ^d} ∥∇f∥_E dx = ∥f∥₁ + ∥∇f∥₁$. It is proved that if $f ∈ L¹_{(1)}(ℝ^d,E)$ then there exists a sequence $(g_m) ⊂ L_{(1)}¹(ℝ^d,E)$ such that $f = ∑_m g_m$; $∑_m (∥g_m∥₁ + ∥∇g_m ∥₁) ∞$; and $∥g_m∥_∞^{1/d} ∥g_m∥₁^{(d-1)/d} ≤ b∥∇g_m∥₁$ for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding $L_{(1)}¹(ℝ^d,E) ↪ L²(ℝ^d,E)$. In particular, the embedding into Besov spaces $L¹_{(1)} (ℝ^d,E) ↪ B_{p,1}^{θ(p,d)}(ℝ^d,E)$ is proved, where $θ(p,d) = d(p^{-1} + d^{-1} -1)$ for 1 p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada.
DOI : 10.4064/sm-107-1-61-100

A. Pełczyński 1 ;  1

1
@article{10_4064_sm_107_1_61_100,
     author = {A. Pe{\l}czy\'nski and  },
     title = {Molecular decompositions and embedding theorems for vector-valued {Sobolev} spaces with gradient norm},
     journal = {Studia Mathematica},
     pages = {61--100},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {1993},
     doi = {10.4064/sm-107-1-61-100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-107-1-61-100/}
}
TY  - JOUR
AU  - A. Pełczyński
AU  -  
TI  - Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm
JO  - Studia Mathematica
PY  - 1993
SP  - 61
EP  - 100
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-107-1-61-100/
DO  - 10.4064/sm-107-1-61-100
LA  - en
ID  - 10_4064_sm_107_1_61_100
ER  - 
%0 Journal Article
%A A. Pełczyński
%A  
%T Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm
%J Studia Mathematica
%D 1993
%P 61-100
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-107-1-61-100/
%R 10.4064/sm-107-1-61-100
%G en
%F 10_4064_sm_107_1_61_100
A. Pełczyński;  . Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm. Studia Mathematica, Tome 107 (1993) no. 1, pp. 61-100. doi: 10.4064/sm-107-1-61-100

Cité par Sources :