Factorization of Montel operators
Studia Mathematica, Tome 107 (1993) no. 1, pp. 15-32
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Consider the following conditions. (a) Every regular LB-space is complete; (b) if an operator T between complete LB-spaces maps bounded sets into relatively compact sets, then T factorizes through a Montel LB-space; (c) for every complete LB-space E the space C (βℕ, E) is bornological. We show that (a) ⇒ (b) ⇒ (c). Moreover, we show that if E is Montel, then (c) holds. An example of an LB-space E with a strictly increasing transfinite sequence of its Mackey derivatives is given.
Keywords:
Fréchet space, Fréchet-Montel space, complete LB-space, Montel LB-space, regular LB-space, Mackey completion of an LB-space, bornologicity of C(K, E)
Affiliations des auteurs :
S. Dierolf 1
@article{10_4064_sm_107_1_15_32,
author = {S. Dierolf},
title = {Factorization of {Montel} operators},
journal = {Studia Mathematica},
pages = {15--32},
publisher = {mathdoc},
volume = {107},
number = {1},
year = {1993},
doi = {10.4064/sm-107-1-15-32},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-107-1-15-32/}
}
S. Dierolf. Factorization of Montel operators. Studia Mathematica, Tome 107 (1993) no. 1, pp. 15-32. doi: 10.4064/sm-107-1-15-32
Cité par Sources :