Characterization of weak type by the entropy distribution of r-nuclear operators
Studia Mathematica, Tome 107 (1993) no. 1, pp. 1-14
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The dual of a Banach space X is of weak type p if and only if the entropy numbers of an r-nuclear operator with values in a Banach space of weak type q belong to the Lorentz sequence space $ℓ_{s,r}$ with 1/s + 1/p + 1/q = 1 + 1/r (0 r 1, 1 ≤ p, q ≤ 2). It is enough to test this for Y = X*. This extends results of Carl, König and Kühn.
@article{10_4064_sm_107_1_1_14,
author = {Martin Defant},
title = {Characterization of weak type by the entropy distribution of r-nuclear operators},
journal = {Studia Mathematica},
pages = {1--14},
year = {1993},
volume = {107},
number = {1},
doi = {10.4064/sm-107-1-1-14},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-107-1-1-14/}
}
TY - JOUR AU - Martin Defant TI - Characterization of weak type by the entropy distribution of r-nuclear operators JO - Studia Mathematica PY - 1993 SP - 1 EP - 14 VL - 107 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-107-1-1-14/ DO - 10.4064/sm-107-1-1-14 LA - en ID - 10_4064_sm_107_1_1_14 ER -
Martin Defant. Characterization of weak type by the entropy distribution of r-nuclear operators. Studia Mathematica, Tome 107 (1993) no. 1, pp. 1-14. doi: 10.4064/sm-107-1-1-14
Cité par Sources :