$T_{f}$-splines et approximation par $T_{f}$ -prolongement
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 106 (1993) no. 3, pp. 203-211
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We study $T_f$-splines (existence, uniqueness and convergence) in Banach spaces with a view to applications in approximation. Our approach allows, in particular, considering some problems in a more regular domain, and hence facilitating their solution.
            
            
            
          
        
      @article{10_4064_sm_106_3_203_211,
     author = {N. M. Benbourhim},
     title = {$T_{f}$-splines et approximation par $T_{f}$ -prolongement},
     journal = {Studia Mathematica},
     pages = {203--211},
     publisher = {mathdoc},
     volume = {106},
     number = {3},
     year = {1993},
     doi = {10.4064/sm-106-3-203-211},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-3-203-211/}
}
                      
                      
                    TY  - JOUR
AU  - N. M. Benbourhim
TI  - $T_{f}$-splines et approximation par $T_{f}$ -prolongement
JO  - Studia Mathematica
PY  - 1993
SP  - 203
EP  - 211
VL  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-3-203-211/
DO  - 10.4064/sm-106-3-203-211
LA  - fr
ID  - 10_4064_sm_106_3_203_211
ER  - 
                      
                      
                    N. M. Benbourhim. $T_{f}$-splines et approximation par $T_{f}$ -prolongement. Studia Mathematica, Tome 106 (1993) no. 3, pp. 203-211. doi: 10.4064/sm-106-3-203-211
                  
                Cité par Sources :