$T_{f}$-splines et approximation par $T_{f}$ -prolongement
Studia Mathematica, Tome 106 (1993) no. 3, pp. 203-211
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study $T_f$-splines (existence, uniqueness and convergence) in Banach spaces with a view to applications in approximation. Our approach allows, in particular, considering some problems in a more regular domain, and hence facilitating their solution.
@article{10_4064_sm_106_3_203_211,
author = {N. M. Benbourhim},
title = {$T_{f}$-splines et approximation par $T_{f}$ -prolongement},
journal = {Studia Mathematica},
pages = {203--211},
year = {1993},
volume = {106},
number = {3},
doi = {10.4064/sm-106-3-203-211},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-3-203-211/}
}
TY - JOUR
AU - N. M. Benbourhim
TI - $T_{f}$-splines et approximation par $T_{f}$ -prolongement
JO - Studia Mathematica
PY - 1993
SP - 203
EP - 211
VL - 106
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-3-203-211/
DO - 10.4064/sm-106-3-203-211
LA - fr
ID - 10_4064_sm_106_3_203_211
ER -
N. M. Benbourhim. $T_{f}$-splines et approximation par $T_{f}$ -prolongement. Studia Mathematica, Tome 106 (1993) no. 3, pp. 203-211. doi: 10.4064/sm-106-3-203-211
Cité par Sources :