Properly semi-L-embedded complex spaces
Studia Mathematica, Tome 106 (1993) no. 2, pp. 197-202

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the existence of complex Banach spaces X such that every element F in the bidual X** of X has a unique best approximation π(F) in X, the equality ∥F∥ = ∥π (F)∥ + ∥F - π (F)∥ holds for all F in X**, but the mapping π is not linear.
DOI : 10.4064/sm-106-2-197-202

Angel Rodríguez Palacios 1

1
@article{10_4064_sm_106_2_197_202,
     author = {Angel Rodr{\'\i}guez Palacios},
     title = {Properly {semi-L-embedded} complex spaces},
     journal = {Studia Mathematica},
     pages = {197--202},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {1993},
     doi = {10.4064/sm-106-2-197-202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-197-202/}
}
TY  - JOUR
AU  - Angel Rodríguez Palacios
TI  - Properly semi-L-embedded complex spaces
JO  - Studia Mathematica
PY  - 1993
SP  - 197
EP  - 202
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-197-202/
DO  - 10.4064/sm-106-2-197-202
LA  - en
ID  - 10_4064_sm_106_2_197_202
ER  - 
%0 Journal Article
%A Angel Rodríguez Palacios
%T Properly semi-L-embedded complex spaces
%J Studia Mathematica
%D 1993
%P 197-202
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-197-202/
%R 10.4064/sm-106-2-197-202
%G en
%F 10_4064_sm_106_2_197_202
Angel Rodríguez Palacios. Properly semi-L-embedded complex spaces. Studia Mathematica, Tome 106 (1993) no. 2, pp. 197-202. doi: 10.4064/sm-106-2-197-202

Cité par Sources :