Properly semi-L-embedded complex spaces
Studia Mathematica, Tome 106 (1993) no. 2, pp. 197-202
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the existence of complex Banach spaces X such that every element F in the bidual X** of X has a unique best approximation π(F) in X, the equality ∥F∥ = ∥π (F)∥ + ∥F - π (F)∥ holds for all F in X**, but the mapping π is not linear.
@article{10_4064_sm_106_2_197_202,
author = {Angel Rodr{\'\i}guez Palacios},
title = {Properly {semi-L-embedded} complex spaces},
journal = {Studia Mathematica},
pages = {197--202},
publisher = {mathdoc},
volume = {106},
number = {2},
year = {1993},
doi = {10.4064/sm-106-2-197-202},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-197-202/}
}
TY - JOUR AU - Angel Rodríguez Palacios TI - Properly semi-L-embedded complex spaces JO - Studia Mathematica PY - 1993 SP - 197 EP - 202 VL - 106 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-197-202/ DO - 10.4064/sm-106-2-197-202 LA - en ID - 10_4064_sm_106_2_197_202 ER -
Angel Rodríguez Palacios. Properly semi-L-embedded complex spaces. Studia Mathematica, Tome 106 (1993) no. 2, pp. 197-202. doi: 10.4064/sm-106-2-197-202
Cité par Sources :