Perturbation theory relative to a Banach algebra of operators
Studia Mathematica, Tome 106 (1993) no. 2, pp. 153-174

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ℬ be a Banach algebra of bounded linear operators on a Banach space X. Let S be a closed linear operator in X, and let R be a linear operator in X. In this paper the spectral and Fredholm theory relative to ℬ of the perturbed operator S + R is developed. In particular, the situation where R is S-inessential relative to ℬ is studied. Several examples are given to illustrate the usefulness of these concepts.
DOI : 10.4064/sm-106-2-153-174
Keywords: Banach algebra of operators, Fredholm operator, perturbation theory, essential spectrum

Bruce A. Barnes 1

1
@article{10_4064_sm_106_2_153_174,
     author = {Bruce A.  Barnes},
     title = {Perturbation theory relative to a {Banach} algebra of operators},
     journal = {Studia Mathematica},
     pages = {153--174},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {1993},
     doi = {10.4064/sm-106-2-153-174},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-153-174/}
}
TY  - JOUR
AU  - Bruce A.  Barnes
TI  - Perturbation theory relative to a Banach algebra of operators
JO  - Studia Mathematica
PY  - 1993
SP  - 153
EP  - 174
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-153-174/
DO  - 10.4064/sm-106-2-153-174
LA  - en
ID  - 10_4064_sm_106_2_153_174
ER  - 
%0 Journal Article
%A Bruce A.  Barnes
%T Perturbation theory relative to a Banach algebra of operators
%J Studia Mathematica
%D 1993
%P 153-174
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-153-174/
%R 10.4064/sm-106-2-153-174
%G en
%F 10_4064_sm_106_2_153_174
Bruce A.  Barnes. Perturbation theory relative to a Banach algebra of operators. Studia Mathematica, Tome 106 (1993) no. 2, pp. 153-174. doi: 10.4064/sm-106-2-153-174

Cité par Sources :