Perturbation theory relative to a Banach algebra of operators
Studia Mathematica, Tome 106 (1993) no. 2, pp. 153-174
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ℬ be a Banach algebra of bounded linear operators on a Banach space X. Let S be a closed linear operator in X, and let R be a linear operator in X. In this paper the spectral and Fredholm theory relative to ℬ of the perturbed operator S + R is developed. In particular, the situation where R is S-inessential relative to ℬ is studied. Several examples are given to illustrate the usefulness of these concepts.
Keywords:
Banach algebra of operators, Fredholm operator, perturbation theory, essential spectrum
Affiliations des auteurs :
Bruce A. Barnes 1
@article{10_4064_sm_106_2_153_174,
author = {Bruce A. Barnes},
title = {Perturbation theory relative to a {Banach} algebra of operators},
journal = {Studia Mathematica},
pages = {153--174},
publisher = {mathdoc},
volume = {106},
number = {2},
year = {1993},
doi = {10.4064/sm-106-2-153-174},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-153-174/}
}
TY - JOUR AU - Bruce A. Barnes TI - Perturbation theory relative to a Banach algebra of operators JO - Studia Mathematica PY - 1993 SP - 153 EP - 174 VL - 106 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-153-174/ DO - 10.4064/sm-106-2-153-174 LA - en ID - 10_4064_sm_106_2_153_174 ER -
Bruce A. Barnes. Perturbation theory relative to a Banach algebra of operators. Studia Mathematica, Tome 106 (1993) no. 2, pp. 153-174. doi: 10.4064/sm-106-2-153-174
Cité par Sources :