A multidimensional Lyapunov type theorem
Studia Mathematica, Tome 106 (1993) no. 2, pp. 121-128

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given functions $f_1,...,f_ν ∈ ℒ^1(ℝ^n;ℝ^m)$, weights $p_1,...,p_ν: ℝ^n → [0,1]$ with $∑ p_i ≡ 1$, and any finite set of vectors $v_1,...,v_k ∈ ℝ^n ∖ {0}$, we prove the existence of a partition ${A_1,...,A_ν}$ of $ℝ^n$ such that the two functions $f_p = ∑_{i=1}^ν p_i f_i, $f_A = ∑_{i=1}^ν χ_{A_i}f_i$ have the same integral not only over $ℝ^n$, but also over every single line $x' + ℝv_j$, for each j = 1,...,k and almost every x' in the orthogonal hyperplane $v_j^⊥$. Equivalently, the Fourier transforms of $f_p$, $f_A$ satisfy $f̂_p(y) = f̂_A(y)$ for every $y ∈ ⋃ v_j^⊥$.
DOI : 10.4064/sm-106-2-121-128

Alberto Bressan 1

1
@article{10_4064_sm_106_2_121_128,
     author = {Alberto Bressan},
     title = {A multidimensional {Lyapunov} type theorem},
     journal = {Studia Mathematica},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {1993},
     doi = {10.4064/sm-106-2-121-128},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-121-128/}
}
TY  - JOUR
AU  - Alberto Bressan
TI  - A multidimensional Lyapunov type theorem
JO  - Studia Mathematica
PY  - 1993
SP  - 121
EP  - 128
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-121-128/
DO  - 10.4064/sm-106-2-121-128
LA  - de
ID  - 10_4064_sm_106_2_121_128
ER  - 
%0 Journal Article
%A Alberto Bressan
%T A multidimensional Lyapunov type theorem
%J Studia Mathematica
%D 1993
%P 121-128
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-106-2-121-128/
%R 10.4064/sm-106-2-121-128
%G de
%F 10_4064_sm_106_2_121_128
Alberto Bressan. A multidimensional Lyapunov type theorem. Studia Mathematica, Tome 106 (1993) no. 2, pp. 121-128. doi: 10.4064/sm-106-2-121-128

Cité par Sources :