Pointwise inequalities for Sobolev functions and some applications
Studia Mathematica, Tome 106 (1993) no. 1, pp. 77-92
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We get a class of pointwise inequalities for Sobolev functions. As a corollary we obtain a short proof of Michael-Ziemer's theorem which states that Sobolev functions can be approximated by $C^m$ functions both in norm and capacity.
Keywords:
Sobolev function, Taylor polynomial, approximation, integral representation, Bessel capacity
Affiliations des auteurs :
Bogdan Bojarski 1 ;  1
@article{10_4064_sm_106_1_77_92,
author = {Bogdan Bojarski and },
title = {Pointwise inequalities for {Sobolev} functions and some applications},
journal = {Studia Mathematica},
pages = {77--92},
publisher = {mathdoc},
volume = {106},
number = {1},
year = {1993},
doi = {10.4064/sm-106-1-77-92},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-77-92/}
}
TY - JOUR AU - Bogdan Bojarski AU - TI - Pointwise inequalities for Sobolev functions and some applications JO - Studia Mathematica PY - 1993 SP - 77 EP - 92 VL - 106 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-77-92/ DO - 10.4064/sm-106-1-77-92 LA - en ID - 10_4064_sm_106_1_77_92 ER -
Bogdan Bojarski; . Pointwise inequalities for Sobolev functions and some applications. Studia Mathematica, Tome 106 (1993) no. 1, pp. 77-92. doi: 10.4064/sm-106-1-77-92
Cité par Sources :