Pointwise inequalities for Sobolev functions and some applications
Studia Mathematica, Tome 106 (1993) no. 1, pp. 77-92 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We get a class of pointwise inequalities for Sobolev functions. As a corollary we obtain a short proof of Michael-Ziemer's theorem which states that Sobolev functions can be approximated by $C^m$ functions both in norm and capacity.
DOI : 10.4064/sm-106-1-77-92
Keywords: Sobolev function, Taylor polynomial, approximation, integral representation, Bessel capacity
@article{10_4064_sm_106_1_77_92,
     author = {Bogdan Bojarski and  },
     title = {Pointwise inequalities for {Sobolev} functions and some applications},
     journal = {Studia Mathematica},
     pages = {77--92},
     year = {1993},
     volume = {106},
     number = {1},
     doi = {10.4064/sm-106-1-77-92},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-77-92/}
}
TY  - JOUR
AU  - Bogdan Bojarski
AU  -  
TI  - Pointwise inequalities for Sobolev functions and some applications
JO  - Studia Mathematica
PY  - 1993
SP  - 77
EP  - 92
VL  - 106
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-77-92/
DO  - 10.4064/sm-106-1-77-92
LA  - en
ID  - 10_4064_sm_106_1_77_92
ER  - 
%0 Journal Article
%A Bogdan Bojarski
%A  
%T Pointwise inequalities for Sobolev functions and some applications
%J Studia Mathematica
%D 1993
%P 77-92
%V 106
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-77-92/
%R 10.4064/sm-106-1-77-92
%G en
%F 10_4064_sm_106_1_77_92
Bogdan Bojarski;  . Pointwise inequalities for Sobolev functions and some applications. Studia Mathematica, Tome 106 (1993) no. 1, pp. 77-92. doi: 10.4064/sm-106-1-77-92

Cité par Sources :