Weighted Bergman projections and tangential area integrals
Studia Mathematica, Tome 106 (1993) no. 1, pp. 59-76
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let Ω be a bounded strictly pseudoconvex domain in $ℂ^n$. In this paper we find sufficient conditions on a function f defined on Ω in order that the weighted Bergman projection $P_{s}f$ belong to the Hardy-Sobolev space $H^p_k(∂Ω)$. The conditions on f we consider are formulated in terms of tent spaces and complex tangential vector fields. If f is holomorphic then these conditions are necessary and sufficient in order that f belong to the Hardy-Sobolev space $H^p_k(∂Ω)$.
@article{10_4064_sm_106_1_59_76,
author = {William S. Cohn},
title = {Weighted {Bergman} projections and tangential area integrals},
journal = {Studia Mathematica},
pages = {59--76},
publisher = {mathdoc},
volume = {106},
number = {1},
year = {1993},
doi = {10.4064/sm-106-1-59-76},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-59-76/}
}
TY - JOUR AU - William S. Cohn TI - Weighted Bergman projections and tangential area integrals JO - Studia Mathematica PY - 1993 SP - 59 EP - 76 VL - 106 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-59-76/ DO - 10.4064/sm-106-1-59-76 LA - en ID - 10_4064_sm_106_1_59_76 ER -
William S. Cohn. Weighted Bergman projections and tangential area integrals. Studia Mathematica, Tome 106 (1993) no. 1, pp. 59-76. doi: 10.4064/sm-106-1-59-76
Cité par Sources :