Weighted Bergman projections and tangential area integrals
Studia Mathematica, Tome 106 (1993) no. 1, pp. 59-76
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let Ω be a bounded strictly pseudoconvex domain in $ℂ^n$. In this paper we find sufficient conditions on a function f defined on Ω in order that the weighted Bergman projection $P_{s}f$ belong to the Hardy-Sobolev space $H^p_k(∂Ω)$. The conditions on f we consider are formulated in terms of tent spaces and complex tangential vector fields. If f is holomorphic then these conditions are necessary and sufficient in order that f belong to the Hardy-Sobolev space $H^p_k(∂Ω)$.
@article{10_4064_sm_106_1_59_76,
author = {William S. Cohn},
title = {Weighted {Bergman} projections and tangential area integrals},
journal = {Studia Mathematica},
pages = {59--76},
year = {1993},
volume = {106},
number = {1},
doi = {10.4064/sm-106-1-59-76},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-59-76/}
}
William S. Cohn. Weighted Bergman projections and tangential area integrals. Studia Mathematica, Tome 106 (1993) no. 1, pp. 59-76. doi: 10.4064/sm-106-1-59-76
Cité par Sources :