Weighted Bergman projections and tangential area integrals
Studia Mathematica, Tome 106 (1993) no. 1, pp. 59-76

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let Ω be a bounded strictly pseudoconvex domain in $ℂ^n$. In this paper we find sufficient conditions on a function f defined on Ω in order that the weighted Bergman projection $P_{s}f$ belong to the Hardy-Sobolev space $H^p_k(∂Ω)$. The conditions on f we consider are formulated in terms of tent spaces and complex tangential vector fields. If f is holomorphic then these conditions are necessary and sufficient in order that f belong to the Hardy-Sobolev space $H^p_k(∂Ω)$.
DOI : 10.4064/sm-106-1-59-76

William S. Cohn 1

1
@article{10_4064_sm_106_1_59_76,
     author = {William S. Cohn},
     title = {Weighted {Bergman} projections and tangential area integrals},
     journal = {Studia Mathematica},
     pages = {59--76},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {1993},
     doi = {10.4064/sm-106-1-59-76},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-59-76/}
}
TY  - JOUR
AU  - William S. Cohn
TI  - Weighted Bergman projections and tangential area integrals
JO  - Studia Mathematica
PY  - 1993
SP  - 59
EP  - 76
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-59-76/
DO  - 10.4064/sm-106-1-59-76
LA  - en
ID  - 10_4064_sm_106_1_59_76
ER  - 
%0 Journal Article
%A William S. Cohn
%T Weighted Bergman projections and tangential area integrals
%J Studia Mathematica
%D 1993
%P 59-76
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-59-76/
%R 10.4064/sm-106-1-59-76
%G en
%F 10_4064_sm_106_1_59_76
William S. Cohn. Weighted Bergman projections and tangential area integrals. Studia Mathematica, Tome 106 (1993) no. 1, pp. 59-76. doi: 10.4064/sm-106-1-59-76

Cité par Sources :