Ergodic properties of skew products with Lasota-Yorke type maps in the base
Studia Mathematica, Tome 106 (1993) no. 1, pp. 45-57 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We consider skew products $T(x,y) = (f(x),T_{e(x)} y)$ preserving a measure which is absolutely continuous with respect to the product measure. Here f is a 1-sided Markov shift with a finite set of states or a Lasota-Yorke type transformation and $T_i$, i = 1,..., max e, are nonsingular transformations of some probability space. We obtain the description of the set of eigenfunctions of the Frobenius-Perron operator for T and consequently we get the conditions ensuring the ergodicity, weak mixing and exactness of T. We apply these results to random perturbations.
DOI : 10.4064/sm-106-1-45-57

Zbigniew S. Kowalski 1

1
@article{10_4064_sm_106_1_45_57,
     author = {Zbigniew S. Kowalski},
     title = {Ergodic properties of skew products with {Lasota-Yorke} type maps in the base},
     journal = {Studia Mathematica},
     pages = {45--57},
     year = {1993},
     volume = {106},
     number = {1},
     doi = {10.4064/sm-106-1-45-57},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-45-57/}
}
TY  - JOUR
AU  - Zbigniew S. Kowalski
TI  - Ergodic properties of skew products with Lasota-Yorke type maps in the base
JO  - Studia Mathematica
PY  - 1993
SP  - 45
EP  - 57
VL  - 106
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-45-57/
DO  - 10.4064/sm-106-1-45-57
LA  - en
ID  - 10_4064_sm_106_1_45_57
ER  - 
%0 Journal Article
%A Zbigniew S. Kowalski
%T Ergodic properties of skew products with Lasota-Yorke type maps in the base
%J Studia Mathematica
%D 1993
%P 45-57
%V 106
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-45-57/
%R 10.4064/sm-106-1-45-57
%G en
%F 10_4064_sm_106_1_45_57
Zbigniew S. Kowalski. Ergodic properties of skew products with Lasota-Yorke type maps in the base. Studia Mathematica, Tome 106 (1993) no. 1, pp. 45-57. doi: 10.4064/sm-106-1-45-57

Cité par Sources :