Ergodic properties of skew products with Lasota-Yorke type maps in the base
Studia Mathematica, Tome 106 (1993) no. 1, pp. 45-57
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider skew products $T(x,y) = (f(x),T_{e(x)} y)$ preserving a measure which is absolutely continuous with respect to the product measure. Here f is a 1-sided Markov shift with a finite set of states or a Lasota-Yorke type transformation and $T_i$, i = 1,..., max e, are nonsingular transformations of some probability space. We obtain the description of the set of eigenfunctions of the Frobenius-Perron operator for T and consequently we get the conditions ensuring the ergodicity, weak mixing and exactness of T. We apply these results to random perturbations.
@article{10_4064_sm_106_1_45_57,
author = {Zbigniew S. Kowalski},
title = {Ergodic properties of skew products with {Lasota-Yorke} type maps in the base},
journal = {Studia Mathematica},
pages = {45--57},
year = {1993},
volume = {106},
number = {1},
doi = {10.4064/sm-106-1-45-57},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-45-57/}
}
TY - JOUR AU - Zbigniew S. Kowalski TI - Ergodic properties of skew products with Lasota-Yorke type maps in the base JO - Studia Mathematica PY - 1993 SP - 45 EP - 57 VL - 106 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-45-57/ DO - 10.4064/sm-106-1-45-57 LA - en ID - 10_4064_sm_106_1_45_57 ER -
Zbigniew S. Kowalski. Ergodic properties of skew products with Lasota-Yorke type maps in the base. Studia Mathematica, Tome 106 (1993) no. 1, pp. 45-57. doi: 10.4064/sm-106-1-45-57
Cité par Sources :