Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself
Studia Mathematica, Tome 106 (1993) no. 1, pp. 1-44

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider operators of the form $(Ωf)(y) = ʃ_{-∞}^∞ Ω(y,u)f(u)du$ with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and $h ∈ L^∞$ (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space $Ḃ^{0,1}_1$ (= B) into itself. In particular, all operators with $h(y) = e^{i|y|^a}$, a > 0, a ≠ 1, map B into itself.
DOI : 10.4064/sm-106-1-1-44

G. Sampson 1

1
@article{10_4064_sm_106_1_1_44,
     author = {G. Sampson},
     title = {Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself},
     journal = {Studia Mathematica},
     pages = {1--44},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {1993},
     doi = {10.4064/sm-106-1-1-44},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-1-44/}
}
TY  - JOUR
AU  - G. Sampson
TI  - Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself
JO  - Studia Mathematica
PY  - 1993
SP  - 1
EP  - 44
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-1-44/
DO  - 10.4064/sm-106-1-1-44
LA  - en
ID  - 10_4064_sm_106_1_1_44
ER  - 
%0 Journal Article
%A G. Sampson
%T Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself
%J Studia Mathematica
%D 1993
%P 1-44
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-1-44/
%R 10.4064/sm-106-1-1-44
%G en
%F 10_4064_sm_106_1_1_44
G. Sampson. Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself. Studia Mathematica, Tome 106 (1993) no. 1, pp. 1-44. doi: 10.4064/sm-106-1-1-44

Cité par Sources :