Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself
Studia Mathematica, Tome 106 (1993) no. 1, pp. 1-44
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider operators of the form $(Ωf)(y) = ʃ_{-∞}^∞ Ω(y,u)f(u)du$ with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and $h ∈ L^∞$ (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space $Ḃ^{0,1}_1$ (= B) into itself. In particular, all operators with $h(y) = e^{i|y|^a}$, a > 0, a ≠ 1, map B into itself.
@article{10_4064_sm_106_1_1_44,
author = {G. Sampson},
title = {Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself},
journal = {Studia Mathematica},
pages = {1--44},
year = {1993},
volume = {106},
number = {1},
doi = {10.4064/sm-106-1-1-44},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-1-44/}
}
TY - JOUR
AU - G. Sampson
TI - Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself
JO - Studia Mathematica
PY - 1993
SP - 1
EP - 44
VL - 106
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-106-1-1-44/
DO - 10.4064/sm-106-1-1-44
LA - en
ID - 10_4064_sm_106_1_1_44
ER -
G. Sampson. Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself. Studia Mathematica, Tome 106 (1993) no. 1, pp. 1-44. doi: 10.4064/sm-106-1-1-44
Cité par Sources :