On polynomials in primes and J. Bourgain's circle method approach to ergodic theorems II
Studia Mathematica, Tome 105 (1993) no. 3, pp. 207-233

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if q is greater than one, T is a measure preserving transformation of the measure space (X,β,μ) and f is in $L^{q}(X,β,μ)$ then if ϕ is a non-constant polynomial mapping the natural numbers to themselves, the averages $π_{N}^{-1} ∑_{1≤p≤N} f(T^{ϕ(p)} x) (N = 1, 2, ...) converge μ almost everywhere. Here p runs over the primes and $π_N$ denotes their number in [1, N].
DOI : 10.4064/sm-105-3-207-233

R. Nair 1

1
@article{10_4064_sm_105_3_207_233,
     author = {R. Nair},
     title = {On polynomials in primes and {J.} {Bourgain's} circle method approach to ergodic theorems {II}},
     journal = {Studia Mathematica},
     pages = {207--233},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {1993},
     doi = {10.4064/sm-105-3-207-233},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-105-3-207-233/}
}
TY  - JOUR
AU  - R. Nair
TI  - On polynomials in primes and J. Bourgain's circle method approach to ergodic theorems II
JO  - Studia Mathematica
PY  - 1993
SP  - 207
EP  - 233
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-105-3-207-233/
DO  - 10.4064/sm-105-3-207-233
LA  - en
ID  - 10_4064_sm_105_3_207_233
ER  - 
%0 Journal Article
%A R. Nair
%T On polynomials in primes and J. Bourgain's circle method approach to ergodic theorems II
%J Studia Mathematica
%D 1993
%P 207-233
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-105-3-207-233/
%R 10.4064/sm-105-3-207-233
%G en
%F 10_4064_sm_105_3_207_233
R. Nair. On polynomials in primes and J. Bourgain's circle method approach to ergodic theorems II. Studia Mathematica, Tome 105 (1993) no. 3, pp. 207-233. doi: 10.4064/sm-105-3-207-233

Cité par Sources :