An example of a generalized completely continuous representation of a locally compact group
Studia Mathematica, Tome 105 (1993) no. 2, pp. 189-205
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
There is constructed a compactly generated, separable, locally compact group G and a continuous irreducible unitary representation π of G such that the image π(C*(G)) of the group C*-algebra contains the algebra of compact operators, while the image $π(L^1(G))$ of the $L^1$-group algebra does not containany nonzero compact operator. The group G is a semidirect product of a metabelian discrete group and a "generalized Heisenberg group".
@article{10_4064_sm_105_2_189_205,
author = {Detlev Poguntke},
title = {An example of a generalized completely continuous representation of a locally compact group},
journal = {Studia Mathematica},
pages = {189--205},
publisher = {mathdoc},
volume = {105},
number = {2},
year = {1993},
doi = {10.4064/sm-105-2-189-205},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-189-205/}
}
TY - JOUR AU - Detlev Poguntke TI - An example of a generalized completely continuous representation of a locally compact group JO - Studia Mathematica PY - 1993 SP - 189 EP - 205 VL - 105 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-189-205/ DO - 10.4064/sm-105-2-189-205 LA - en ID - 10_4064_sm_105_2_189_205 ER -
%0 Journal Article %A Detlev Poguntke %T An example of a generalized completely continuous representation of a locally compact group %J Studia Mathematica %D 1993 %P 189-205 %V 105 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-189-205/ %R 10.4064/sm-105-2-189-205 %G en %F 10_4064_sm_105_2_189_205
Detlev Poguntke. An example of a generalized completely continuous representation of a locally compact group. Studia Mathematica, Tome 105 (1993) no. 2, pp. 189-205. doi: 10.4064/sm-105-2-189-205
Cité par Sources :