An example of a generalized completely continuous representation of a locally compact group
Studia Mathematica, Tome 105 (1993) no. 2, pp. 189-205

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

There is constructed a compactly generated, separable, locally compact group G and a continuous irreducible unitary representation π of G such that the image π(C*(G)) of the group C*-algebra contains the algebra of compact operators, while the image $π(L^1(G))$ of the $L^1$-group algebra does not containany nonzero compact operator. The group G is a semidirect product of a metabelian discrete group and a "generalized Heisenberg group".
DOI : 10.4064/sm-105-2-189-205

Detlev Poguntke 1

1
@article{10_4064_sm_105_2_189_205,
     author = {Detlev Poguntke},
     title = {An example of a generalized completely continuous representation of a locally compact group},
     journal = {Studia Mathematica},
     pages = {189--205},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {1993},
     doi = {10.4064/sm-105-2-189-205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-189-205/}
}
TY  - JOUR
AU  - Detlev Poguntke
TI  - An example of a generalized completely continuous representation of a locally compact group
JO  - Studia Mathematica
PY  - 1993
SP  - 189
EP  - 205
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-189-205/
DO  - 10.4064/sm-105-2-189-205
LA  - en
ID  - 10_4064_sm_105_2_189_205
ER  - 
%0 Journal Article
%A Detlev Poguntke
%T An example of a generalized completely continuous representation of a locally compact group
%J Studia Mathematica
%D 1993
%P 189-205
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-189-205/
%R 10.4064/sm-105-2-189-205
%G en
%F 10_4064_sm_105_2_189_205
Detlev Poguntke. An example of a generalized completely continuous representation of a locally compact group. Studia Mathematica, Tome 105 (1993) no. 2, pp. 189-205. doi: 10.4064/sm-105-2-189-205

Cité par Sources :