Two characterizations of automorphisms on B(X)
Studia Mathematica, Tome 105 (1993) no. 2, pp. 143-149
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let X be an infinite-dimensional Banach space, and let ϕ be a surjective linear map on B(X) with ϕ(I) = I. If ϕ preserves injective operators in both directions then ϕ is an automorphism of the algebra B(X). If X is a Hilbert space, then ϕ is an automorphism of B(X) if and only if it preserves surjective operators in both directions.
@article{10_4064_sm_105_2_143_149,
author = {Peter \v{S}emrl},
title = {Two characterizations of automorphisms on {B(X)}},
journal = {Studia Mathematica},
pages = {143--149},
year = {1993},
volume = {105},
number = {2},
doi = {10.4064/sm-105-2-143-149},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-143-149/}
}
Peter Šemrl. Two characterizations of automorphisms on B(X). Studia Mathematica, Tome 105 (1993) no. 2, pp. 143-149. doi: 10.4064/sm-105-2-143-149
Cité par Sources :