Two characterizations of automorphisms on B(X)
Studia Mathematica, Tome 105 (1993) no. 2, pp. 143-149 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let X be an infinite-dimensional Banach space, and let ϕ be a surjective linear map on B(X) with ϕ(I) = I. If ϕ preserves injective operators in both directions then ϕ is an automorphism of the algebra B(X). If X is a Hilbert space, then ϕ is an automorphism of B(X) if and only if it preserves surjective operators in both directions.
@article{10_4064_sm_105_2_143_149,
     author = {Peter \v{S}emrl},
     title = {Two characterizations of automorphisms on {B(X)}},
     journal = {Studia Mathematica},
     pages = {143--149},
     year = {1993},
     volume = {105},
     number = {2},
     doi = {10.4064/sm-105-2-143-149},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-143-149/}
}
TY  - JOUR
AU  - Peter Šemrl
TI  - Two characterizations of automorphisms on B(X)
JO  - Studia Mathematica
PY  - 1993
SP  - 143
EP  - 149
VL  - 105
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-143-149/
DO  - 10.4064/sm-105-2-143-149
LA  - en
ID  - 10_4064_sm_105_2_143_149
ER  - 
%0 Journal Article
%A Peter Šemrl
%T Two characterizations of automorphisms on B(X)
%J Studia Mathematica
%D 1993
%P 143-149
%V 105
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-143-149/
%R 10.4064/sm-105-2-143-149
%G en
%F 10_4064_sm_105_2_143_149
Peter Šemrl. Two characterizations of automorphisms on B(X). Studia Mathematica, Tome 105 (1993) no. 2, pp. 143-149. doi: 10.4064/sm-105-2-143-149

Cité par Sources :