Pointwise multipliers for functions of weighted bounded mean oscillation
Studia Mathematica, Tome 105 (1993) no. 2, pp. 105-119
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $w : ℝ^{n} × ℝ_{+} → ℝ_{+}$ and 1 ≤ p ∞, let $bmo_{{}w,p}(ℝ^n)$ be the set of locally integrable functions f on $ℝ^n$ for which $sup_{I}(1/w(I) ʃ_{I} |f(x)-f_{I}|^p dx)^{1/p} ∞$ where I = I(a,r) is the cube with center a whose edges have length r and are parallel to the coordinate axes, w(I) = w(a,r) and $f_{I}$ is the average of f over I. If w satisfies appropriate conditions, then the following are equivalent: (1) $fg ∈ bmo_{w,p}(ℝ^n)$ whenever $f ∈ ℝ bmo_{w,p}(ℝ^n)$, (2) $g ∈ L^∞(ℝ^n)$ and $sup_{I}( 1/w*(I) ʃ_{I} |g(x)-g_{I}|^p dx)^{1/p} ∞$, where $w* = w/Ψ, Ψ = Ψ_{1} + Ψ_{2}$ and $Ψ_{1}(a,r) = (ʃ_{1}^{max(2,|a|,r)} (w(O,t)^{1/p})/(t^{n/p+1}) dt)^p$, $Ψ_{2}(a,r) = (ʃ_{r}^{max(2,|a|,r)} (w(a,t)^{1/p})/(t^{n/p+1}} dt)^p$.
@article{10_4064_sm_105_2_105_119,
author = {Eiichi Nakai},
title = {Pointwise multipliers for functions of weighted bounded mean oscillation},
journal = {Studia Mathematica},
pages = {105--119},
publisher = {mathdoc},
volume = {105},
number = {2},
year = {1993},
doi = {10.4064/sm-105-2-105-119},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-105-119/}
}
TY - JOUR AU - Eiichi Nakai TI - Pointwise multipliers for functions of weighted bounded mean oscillation JO - Studia Mathematica PY - 1993 SP - 105 EP - 119 VL - 105 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-105-119/ DO - 10.4064/sm-105-2-105-119 LA - en ID - 10_4064_sm_105_2_105_119 ER -
%0 Journal Article %A Eiichi Nakai %T Pointwise multipliers for functions of weighted bounded mean oscillation %J Studia Mathematica %D 1993 %P 105-119 %V 105 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-105-2-105-119/ %R 10.4064/sm-105-2-105-119 %G en %F 10_4064_sm_105_2_105_119
Eiichi Nakai. Pointwise multipliers for functions of weighted bounded mean oscillation. Studia Mathematica, Tome 105 (1993) no. 2, pp. 105-119. doi: 10.4064/sm-105-2-105-119
Cité par Sources :