Interpolation by elementary operators
Studia Mathematica, Tome 105 (1993) no. 1, pp. 77-92

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given two n-tuples $a = (a_1,...,a_n)$ and $b = (b_1,...,b_n)$ of bounded linear operators on a Hilbert space the question of when there exists an elementary operator E such that $Ea_j = b_j$ for all j =1,...,n, is studied. The analogous question for left multiplications (instead of elementary operators) is answered in any C*-algebra A, as a consequence of the characterization of closed left A-submodules in $A^n$.
DOI : 10.4064/sm-105-1-77-92
Keywords: elementary operators, C*-algebras, multipliers

Bojan Magajna 1

1
@article{10_4064_sm_105_1_77_92,
     author = {Bojan Magajna},
     title = {Interpolation by elementary operators},
     journal = {Studia Mathematica},
     pages = {77--92},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {1993},
     doi = {10.4064/sm-105-1-77-92},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-105-1-77-92/}
}
TY  - JOUR
AU  - Bojan Magajna
TI  - Interpolation by elementary operators
JO  - Studia Mathematica
PY  - 1993
SP  - 77
EP  - 92
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-105-1-77-92/
DO  - 10.4064/sm-105-1-77-92
LA  - en
ID  - 10_4064_sm_105_1_77_92
ER  - 
%0 Journal Article
%A Bojan Magajna
%T Interpolation by elementary operators
%J Studia Mathematica
%D 1993
%P 77-92
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-105-1-77-92/
%R 10.4064/sm-105-1-77-92
%G en
%F 10_4064_sm_105_1_77_92
Bojan Magajna. Interpolation by elementary operators. Studia Mathematica, Tome 105 (1993) no. 1, pp. 77-92. doi: 10.4064/sm-105-1-77-92

Cité par Sources :