Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace
Studia Mathematica, Tome 105 (1993) no. 1, pp. 37-49
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The main result: the dual of separable Banach space X contains a total subspace which is not norming over any infinite-dimensional subspace of X if and only if X has a nonquasireflexive quotient space with a strictly singular quotient mapping.
@article{10_4064_sm_105_1_37_49,
author = {M. I. Ostrovski\u{i}},
title = {Total subspaces in dual {Banach} spaces which are not norming over any infinite-dimensional subspace},
journal = {Studia Mathematica},
pages = {37--49},
publisher = {mathdoc},
volume = {105},
number = {1},
year = {1993},
doi = {10.4064/sm-105-1-37-49},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-105-1-37-49/}
}
TY - JOUR AU - M. I. Ostrovskiĭ TI - Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace JO - Studia Mathematica PY - 1993 SP - 37 EP - 49 VL - 105 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-105-1-37-49/ DO - 10.4064/sm-105-1-37-49 LA - en ID - 10_4064_sm_105_1_37_49 ER -
%0 Journal Article %A M. I. Ostrovskiĭ %T Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace %J Studia Mathematica %D 1993 %P 37-49 %V 105 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-105-1-37-49/ %R 10.4064/sm-105-1-37-49 %G en %F 10_4064_sm_105_1_37_49
M. I. Ostrovskiĭ. Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace. Studia Mathematica, Tome 105 (1993) no. 1, pp. 37-49. doi: 10.4064/sm-105-1-37-49
Cité par Sources :