Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace
Studia Mathematica, Tome 105 (1993) no. 1, pp. 37-49

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The main result: the dual of separable Banach space X contains a total subspace which is not norming over any infinite-dimensional subspace of X if and only if X has a nonquasireflexive quotient space with a strictly singular quotient mapping.
DOI : 10.4064/sm-105-1-37-49

M. I. Ostrovskiĭ 1

1
@article{10_4064_sm_105_1_37_49,
     author = {M. I. Ostrovski\u{i}},
     title = {Total subspaces in dual {Banach} spaces which are not norming over any infinite-dimensional subspace},
     journal = {Studia Mathematica},
     pages = {37--49},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {1993},
     doi = {10.4064/sm-105-1-37-49},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-105-1-37-49/}
}
TY  - JOUR
AU  - M. I. Ostrovskiĭ
TI  - Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace
JO  - Studia Mathematica
PY  - 1993
SP  - 37
EP  - 49
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-105-1-37-49/
DO  - 10.4064/sm-105-1-37-49
LA  - en
ID  - 10_4064_sm_105_1_37_49
ER  - 
%0 Journal Article
%A M. I. Ostrovskiĭ
%T Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace
%J Studia Mathematica
%D 1993
%P 37-49
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-105-1-37-49/
%R 10.4064/sm-105-1-37-49
%G en
%F 10_4064_sm_105_1_37_49
M. I. Ostrovskiĭ. Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace. Studia Mathematica, Tome 105 (1993) no. 1, pp. 37-49. doi: 10.4064/sm-105-1-37-49

Cité par Sources :