Representations of bimeasures
Studia Mathematica, Tome 104 (1993) no. 3, pp. 269-278

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Separately σ-additive and separately finitely additive complex functions on the Cartesian product of two algebras of sets are represented in terms of spectral measures and their finitely additive counterparts. Applications of the techniques include a bounded joint convergence theorem for bimeasure integration, characterizations of positive-definite bimeasures, and a theorem on decomposing a bimeasure into a linear combination of positive-definite ones.
DOI : 10.4064/sm-104-3-269-278

Kari Ylinen 1

1
@article{10_4064_sm_104_3_269_278,
     author = {Kari Ylinen},
     title = {Representations of bimeasures},
     journal = {Studia Mathematica},
     pages = {269--278},
     publisher = {mathdoc},
     volume = {104},
     number = {3},
     year = {1993},
     doi = {10.4064/sm-104-3-269-278},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-104-3-269-278/}
}
TY  - JOUR
AU  - Kari Ylinen
TI  - Representations of bimeasures
JO  - Studia Mathematica
PY  - 1993
SP  - 269
EP  - 278
VL  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-104-3-269-278/
DO  - 10.4064/sm-104-3-269-278
LA  - en
ID  - 10_4064_sm_104_3_269_278
ER  - 
%0 Journal Article
%A Kari Ylinen
%T Representations of bimeasures
%J Studia Mathematica
%D 1993
%P 269-278
%V 104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-104-3-269-278/
%R 10.4064/sm-104-3-269-278
%G en
%F 10_4064_sm_104_3_269_278
Kari Ylinen. Representations of bimeasures. Studia Mathematica, Tome 104 (1993) no. 3, pp. 269-278. doi: 10.4064/sm-104-3-269-278

Cité par Sources :