Interpolation of operators when the extreme spaces are $L^{∞}$
Studia Mathematica, Tome 104 (1993) no. 2, pp. 133-150

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Under some assumptions on the pair $(A_0,B_0)$, we study equivalence between interpolation properties of linear operators and monotonicity conditions for a pair (Y,Z) of rearrangement invariant quasi-Banach spaces when the extreme spaces of the interpolation are $L^∞$. Weak and restricted weak intermediate spaces fall within our context. Applications to classical Lorentz and Lorentz-Orlicz spaces are given.
DOI : 10.4064/sm-104-2-133-150

Jesús Bastero 1

1
@article{10_4064_sm_104_2_133_150,
     author = {Jes\'us Bastero},
     title = {Interpolation of operators when the extreme spaces are $L^{\ensuremath{\infty}}$},
     journal = {Studia Mathematica},
     pages = {133--150},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {1993},
     doi = {10.4064/sm-104-2-133-150},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-104-2-133-150/}
}
TY  - JOUR
AU  - Jesús Bastero
TI  - Interpolation of operators when the extreme spaces are $L^{∞}$
JO  - Studia Mathematica
PY  - 1993
SP  - 133
EP  - 150
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-104-2-133-150/
DO  - 10.4064/sm-104-2-133-150
LA  - en
ID  - 10_4064_sm_104_2_133_150
ER  - 
%0 Journal Article
%A Jesús Bastero
%T Interpolation of operators when the extreme spaces are $L^{∞}$
%J Studia Mathematica
%D 1993
%P 133-150
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-104-2-133-150/
%R 10.4064/sm-104-2-133-150
%G en
%F 10_4064_sm_104_2_133_150
Jesús Bastero. Interpolation of operators when the extreme spaces are $L^{∞}$. Studia Mathematica, Tome 104 (1993) no. 2, pp. 133-150. doi: 10.4064/sm-104-2-133-150

Cité par Sources :