Interpolation of operators when the extreme spaces are $L^{∞}$
Studia Mathematica, Tome 104 (1993) no. 2, pp. 133-150
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Under some assumptions on the pair $(A_0,B_0)$, we study equivalence between interpolation properties of linear operators and monotonicity conditions for a pair (Y,Z) of rearrangement invariant quasi-Banach spaces when the extreme spaces of the interpolation are $L^∞$. Weak and restricted weak intermediate spaces fall within our context. Applications to classical Lorentz and Lorentz-Orlicz spaces are given.
@article{10_4064_sm_104_2_133_150,
author = {Jes\'us Bastero},
title = {Interpolation of operators when the extreme spaces are $L^{\ensuremath{\infty}}$},
journal = {Studia Mathematica},
pages = {133--150},
year = {1993},
volume = {104},
number = {2},
doi = {10.4064/sm-104-2-133-150},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-104-2-133-150/}
}
TY - JOUR
AU - Jesús Bastero
TI - Interpolation of operators when the extreme spaces are $L^{∞}$
JO - Studia Mathematica
PY - 1993
SP - 133
EP - 150
VL - 104
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-104-2-133-150/
DO - 10.4064/sm-104-2-133-150
LA - en
ID - 10_4064_sm_104_2_133_150
ER -
Jesús Bastero. Interpolation of operators when the extreme spaces are $L^{∞}$. Studia Mathematica, Tome 104 (1993) no. 2, pp. 133-150. doi: 10.4064/sm-104-2-133-150
Cité par Sources :