Trace inequalities for spaces in spectral duality
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 104 (1993) no. 1, pp. 99-110
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let (A,e) and (V,K) be an order-unit space and a base-norm space in spectral duality, as in noncommutative spectral theory of Alfsen and Shultz. Let t be a norm lower semicontinuous trace on A, and let φ be a nonnegative convex function on ℝ. It is shown that the mapping a → t(φ(a)) is convex on A. Moreover, the mapping is shown to be nondecreasing if so is φ. Some other similar statements concerning traces and real-valued functions are also obtained.
            
            
            
          
        
      @article{10_4064_sm_104_1_99_110,
     author = {O. E. Tikhonov},
     title = {Trace inequalities for spaces in spectral duality},
     journal = {Studia Mathematica},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {1993},
     doi = {10.4064/sm-104-1-99-110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-104-1-99-110/}
}
                      
                      
                    TY - JOUR AU - O. E. Tikhonov TI - Trace inequalities for spaces in spectral duality JO - Studia Mathematica PY - 1993 SP - 99 EP - 110 VL - 104 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-104-1-99-110/ DO - 10.4064/sm-104-1-99-110 LA - en ID - 10_4064_sm_104_1_99_110 ER -
O. E. Tikhonov. Trace inequalities for spaces in spectral duality. Studia Mathematica, Tome 104 (1993) no. 1, pp. 99-110. doi: 10.4064/sm-104-1-99-110
Cité par Sources :
