Trace inequalities for spaces in spectral duality
Studia Mathematica, Tome 104 (1993) no. 1, pp. 99-110

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let (A,e) and (V,K) be an order-unit space and a base-norm space in spectral duality, as in noncommutative spectral theory of Alfsen and Shultz. Let t be a norm lower semicontinuous trace on A, and let φ be a nonnegative convex function on ℝ. It is shown that the mapping a → t(φ(a)) is convex on A. Moreover, the mapping is shown to be nondecreasing if so is φ. Some other similar statements concerning traces and real-valued functions are also obtained.
DOI : 10.4064/sm-104-1-99-110

O. E. Tikhonov 1

1
@article{10_4064_sm_104_1_99_110,
     author = {O. E. Tikhonov},
     title = {Trace inequalities for spaces in spectral duality},
     journal = {Studia Mathematica},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {1993},
     doi = {10.4064/sm-104-1-99-110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-104-1-99-110/}
}
TY  - JOUR
AU  - O. E. Tikhonov
TI  - Trace inequalities for spaces in spectral duality
JO  - Studia Mathematica
PY  - 1993
SP  - 99
EP  - 110
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-104-1-99-110/
DO  - 10.4064/sm-104-1-99-110
LA  - en
ID  - 10_4064_sm_104_1_99_110
ER  - 
%0 Journal Article
%A O. E. Tikhonov
%T Trace inequalities for spaces in spectral duality
%J Studia Mathematica
%D 1993
%P 99-110
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-104-1-99-110/
%R 10.4064/sm-104-1-99-110
%G en
%F 10_4064_sm_104_1_99_110
O. E. Tikhonov. Trace inequalities for spaces in spectral duality. Studia Mathematica, Tome 104 (1993) no. 1, pp. 99-110. doi: 10.4064/sm-104-1-99-110

Cité par Sources :