Isometries of Musielak-Orlicz spaces II
Studia Mathematica, Tome 104 (1993) no. 1, pp. 75-89
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A characterization of isometries of complex Musielak-Orlicz spaces $L_Φ$ is given. If $L_Φ$ is not a Hilbert space and $U : L_Φ → L_Φ$ is a surjective isometry, then there exist a regular set isomorphism τ from (T,Σ,μ) onto itself and a measurable function w such that U(f) = w ·(f ∘ τ) for all $f ∈ L_Φ$. Isometries of real Nakano spaces, a particular case of Musielak-Orlicz spaces, are also studied.
@article{10_4064_sm_104_1_75_89,
author = {J. E. Jamison},
title = {Isometries of {Musielak-Orlicz} spaces {II}},
journal = {Studia Mathematica},
pages = {75--89},
publisher = {mathdoc},
volume = {104},
number = {1},
year = {1993},
doi = {10.4064/sm-104-1-75-89},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-104-1-75-89/}
}
J. E. Jamison. Isometries of Musielak-Orlicz spaces II. Studia Mathematica, Tome 104 (1993) no. 1, pp. 75-89. doi: 10.4064/sm-104-1-75-89
Cité par Sources :