Almost everywhere summability of Laguerre series. II
Studia Mathematica, Tome 103 (1992) no. 3, pp. 317-327

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Using methods from [9] we prove the almost everywhere convergence of the Cesàro means of Laguerre series associated with the system of Laguerre functions $L^a_n(x) = (n!/Γ(n+a+1))^{1/2} e^{-x/2} x^{a/2} L_n^a(x)$, n = 0,1,2,..., a ≥ 0. The novel ingredient we add to our previous technique is the $A_p$ weights theory. We also take the opportunity to comment and slightly improve on our results from [9].
DOI : 10.4064/sm-103-3-317-327
Keywords: Laguerre expansions, Cesàro means, almost everywhere convergence

K. Stempak 1

1
@article{10_4064_sm_103_3_317_327,
     author = {K. Stempak},
     title = {Almost everywhere summability of {Laguerre} series. {II}},
     journal = {Studia Mathematica},
     pages = {317--327},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {1992},
     doi = {10.4064/sm-103-3-317-327},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-317-327/}
}
TY  - JOUR
AU  - K. Stempak
TI  - Almost everywhere summability of Laguerre series. II
JO  - Studia Mathematica
PY  - 1992
SP  - 317
EP  - 327
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-317-327/
DO  - 10.4064/sm-103-3-317-327
LA  - en
ID  - 10_4064_sm_103_3_317_327
ER  - 
%0 Journal Article
%A K. Stempak
%T Almost everywhere summability of Laguerre series. II
%J Studia Mathematica
%D 1992
%P 317-327
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-317-327/
%R 10.4064/sm-103-3-317-327
%G en
%F 10_4064_sm_103_3_317_327
K. Stempak. Almost everywhere summability of Laguerre series. II. Studia Mathematica, Tome 103 (1992) no. 3, pp. 317-327. doi: 10.4064/sm-103-3-317-327

Cité par Sources :