Almost everywhere summability of Laguerre series. II
Studia Mathematica, Tome 103 (1992) no. 3, pp. 317-327
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Using methods from [9] we prove the almost everywhere convergence of the Cesàro means of Laguerre series associated with the system of Laguerre functions $L^a_n(x) = (n!/Γ(n+a+1))^{1/2} e^{-x/2} x^{a/2} L_n^a(x)$, n = 0,1,2,..., a ≥ 0. The novel ingredient we add to our previous technique is the $A_p$ weights theory. We also take the opportunity to comment and slightly improve on our results from [9].
Keywords:
Laguerre expansions, Cesàro means, almost everywhere convergence
Affiliations des auteurs :
K. Stempak 1
@article{10_4064_sm_103_3_317_327,
author = {K. Stempak},
title = {Almost everywhere summability of {Laguerre} series. {II}},
journal = {Studia Mathematica},
pages = {317--327},
publisher = {mathdoc},
volume = {103},
number = {3},
year = {1992},
doi = {10.4064/sm-103-3-317-327},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-317-327/}
}
TY - JOUR AU - K. Stempak TI - Almost everywhere summability of Laguerre series. II JO - Studia Mathematica PY - 1992 SP - 317 EP - 327 VL - 103 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-317-327/ DO - 10.4064/sm-103-3-317-327 LA - en ID - 10_4064_sm_103_3_317_327 ER -
K. Stempak. Almost everywhere summability of Laguerre series. II. Studia Mathematica, Tome 103 (1992) no. 3, pp. 317-327. doi: 10.4064/sm-103-3-317-327
Cité par Sources :