Functionals on transient stochastic processes with independent increments
Studia Mathematica, Tome 103 (1992) no. 3, pp. 299-315
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The paper is devoted to the study of integral functionals $ʃ_0^∞ f(X(t,ω))dt$ for a wide class of functions f and transient stochastic processes X(t,ω) with stationary and independent increments. In particular, for nonnegative processes a random analogue of the Tauberian theorem is obtained.
@article{10_4064_sm_103_3_299_315,
author = {K. Urbanik},
title = {Functionals on transient stochastic processes with independent increments},
journal = {Studia Mathematica},
pages = {299--315},
publisher = {mathdoc},
volume = {103},
number = {3},
year = {1992},
doi = {10.4064/sm-103-3-299-315},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-299-315/}
}
TY - JOUR AU - K. Urbanik TI - Functionals on transient stochastic processes with independent increments JO - Studia Mathematica PY - 1992 SP - 299 EP - 315 VL - 103 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-299-315/ DO - 10.4064/sm-103-3-299-315 LA - en ID - 10_4064_sm_103_3_299_315 ER -
%0 Journal Article %A K. Urbanik %T Functionals on transient stochastic processes with independent increments %J Studia Mathematica %D 1992 %P 299-315 %V 103 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-299-315/ %R 10.4064/sm-103-3-299-315 %G en %F 10_4064_sm_103_3_299_315
K. Urbanik. Functionals on transient stochastic processes with independent increments. Studia Mathematica, Tome 103 (1992) no. 3, pp. 299-315. doi: 10.4064/sm-103-3-299-315
Cité par Sources :