An example of a subalgebra of $H^{∞}$ on the unit disk whose stable rank is not finite
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 103 (1992) no. 3, pp. 275-281
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We present an example of a subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk.
            
            
            
          
        
      @article{10_4064_sm_103_3_275_281,
     author = {Raymond Mortini},
     title = {An example of a subalgebra of $H^{\ensuremath{\infty}}$ on the unit disk whose stable rank is not finite},
     journal = {Studia Mathematica},
     pages = {275--281},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {1992},
     doi = {10.4064/sm-103-3-275-281},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-275-281/}
}
                      
                      
                    TY  - JOUR
AU  - Raymond Mortini
TI  - An example of a subalgebra of $H^{∞}$ on the unit disk whose stable rank is not finite
JO  - Studia Mathematica
PY  - 1992
SP  - 275
EP  - 281
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-275-281/
DO  - 10.4064/sm-103-3-275-281
LA  - en
ID  - 10_4064_sm_103_3_275_281
ER  - 
                      
                      
                    %0 Journal Article
%A Raymond Mortini
%T An example of a subalgebra of $H^{∞}$ on the unit disk whose stable rank is not finite
%J Studia Mathematica
%D 1992
%P 275-281
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-275-281/
%R 10.4064/sm-103-3-275-281
%G en
%F 10_4064_sm_103_3_275_281
                      
                      
                    Raymond Mortini. An example of a subalgebra of $H^{∞}$ on the unit disk whose stable rank is not finite. Studia Mathematica, Tome 103 (1992) no. 3, pp. 275-281. doi: 10.4064/sm-103-3-275-281
                  
                Cité par Sources :
