An example of a subalgebra of $H^{∞}$ on the unit disk whose stable rank is not finite
Studia Mathematica, Tome 103 (1992) no. 3, pp. 275-281
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We present an example of a subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk.
@article{10_4064_sm_103_3_275_281,
author = {Raymond Mortini},
title = {An example of a subalgebra of $H^{\ensuremath{\infty}}$ on the unit disk whose stable rank is not finite},
journal = {Studia Mathematica},
pages = {275--281},
year = {1992},
volume = {103},
number = {3},
doi = {10.4064/sm-103-3-275-281},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-275-281/}
}
TY - JOUR
AU - Raymond Mortini
TI - An example of a subalgebra of $H^{∞}$ on the unit disk whose stable rank is not finite
JO - Studia Mathematica
PY - 1992
SP - 275
EP - 281
VL - 103
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-275-281/
DO - 10.4064/sm-103-3-275-281
LA - en
ID - 10_4064_sm_103_3_275_281
ER -
%0 Journal Article
%A Raymond Mortini
%T An example of a subalgebra of $H^{∞}$ on the unit disk whose stable rank is not finite
%J Studia Mathematica
%D 1992
%P 275-281
%V 103
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-275-281/
%R 10.4064/sm-103-3-275-281
%G en
%F 10_4064_sm_103_3_275_281
Raymond Mortini. An example of a subalgebra of $H^{∞}$ on the unit disk whose stable rank is not finite. Studia Mathematica, Tome 103 (1992) no. 3, pp. 275-281. doi: 10.4064/sm-103-3-275-281
Cité par Sources :