Pick-Nevanlinna interpolation on finitely-connected domains
Studia Mathematica, Tome 103 (1992) no. 3, pp. 265-273

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let Ω be a domain in the complex plane bounded by m+1 disjoint, analytic simple closed curves and let $z_0,...,z_n$ be n+1 distinct points in Ω. We show that for each (n+1)-tuple $(w_0,...,w_n)$ of complex numbers, there is a unique analytic function B such that: (a) B is continuous on the closure of Ω and has constant modulus on each component of the boundary of Ω; (b) B has n or fewer zeros in Ω; and (c) $B(z_j) = w_j$, 0 ≤ j ≤ n.
DOI : 10.4064/sm-103-3-265-273

Stephen D. Fisher 1

1
@article{10_4064_sm_103_3_265_273,
     author = {Stephen D. Fisher},
     title = {Pick-Nevanlinna interpolation on finitely-connected domains},
     journal = {Studia Mathematica},
     pages = {265--273},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {1992},
     doi = {10.4064/sm-103-3-265-273},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-265-273/}
}
TY  - JOUR
AU  - Stephen D. Fisher
TI  - Pick-Nevanlinna interpolation on finitely-connected domains
JO  - Studia Mathematica
PY  - 1992
SP  - 265
EP  - 273
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-265-273/
DO  - 10.4064/sm-103-3-265-273
LA  - en
ID  - 10_4064_sm_103_3_265_273
ER  - 
%0 Journal Article
%A Stephen D. Fisher
%T Pick-Nevanlinna interpolation on finitely-connected domains
%J Studia Mathematica
%D 1992
%P 265-273
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-265-273/
%R 10.4064/sm-103-3-265-273
%G en
%F 10_4064_sm_103_3_265_273
Stephen D. Fisher. Pick-Nevanlinna interpolation on finitely-connected domains. Studia Mathematica, Tome 103 (1992) no. 3, pp. 265-273. doi: 10.4064/sm-103-3-265-273

Cité par Sources :