Pick-Nevanlinna interpolation on finitely-connected domains
Studia Mathematica, Tome 103 (1992) no. 3, pp. 265-273
Let Ω be a domain in the complex plane bounded by m+1 disjoint, analytic simple closed curves and let $z_0,...,z_n$ be n+1 distinct points in Ω. We show that for each (n+1)-tuple $(w_0,...,w_n)$ of complex numbers, there is a unique analytic function B such that: (a) B is continuous on the closure of Ω and has constant modulus on each component of the boundary of Ω; (b) B has n or fewer zeros in Ω; and (c) $B(z_j) = w_j$, 0 ≤ j ≤ n.
@article{10_4064_sm_103_3_265_273,
author = {Stephen D. Fisher},
title = {Pick-Nevanlinna interpolation on finitely-connected domains},
journal = {Studia Mathematica},
pages = {265--273},
year = {1992},
volume = {103},
number = {3},
doi = {10.4064/sm-103-3-265-273},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-265-273/}
}
TY - JOUR AU - Stephen D. Fisher TI - Pick-Nevanlinna interpolation on finitely-connected domains JO - Studia Mathematica PY - 1992 SP - 265 EP - 273 VL - 103 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-265-273/ DO - 10.4064/sm-103-3-265-273 LA - en ID - 10_4064_sm_103_3_265_273 ER -
Stephen D. Fisher. Pick-Nevanlinna interpolation on finitely-connected domains. Studia Mathematica, Tome 103 (1992) no. 3, pp. 265-273. doi: 10.4064/sm-103-3-265-273
Cité par Sources :