Maximal functions related to subelliptic operators invariant under an action of a nilpotent Lie group
Studia Mathematica, Tome 103 (1992) no. 3, pp. 239-264

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

On the domain $Ω_a = {(x,b) : x ∈ N, b ∈ ℝ^+, b > a}$, where N is a simply connected nilpotent Lie group and a ≥ 0, certain N-invariant second order subelliptic operators L are considered. Every bounded L-harmonic function F is the Poisson integral $F(x,b) = f ∗ μ̌_a^b(x)$ for an $f ∈ L^∞(N)$. The main theorem of the paper asserts that under some assumptions the maximal functions $M_1f(x) = sup_{b≥a+1} |f∗μ̌_a^b(x)|$, $M_2f(x) = sup_{a
DOI : 10.4064/sm-103-3-239-264

Ewa Damek 1

1
@article{10_4064_sm_103_3_239_264,
     author = {Ewa Damek},
     title = {Maximal functions related to subelliptic operators invariant under an action of a nilpotent {Lie} group},
     journal = {Studia Mathematica},
     pages = {239--264},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {1992},
     doi = {10.4064/sm-103-3-239-264},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-239-264/}
}
TY  - JOUR
AU  - Ewa Damek
TI  - Maximal functions related to subelliptic operators invariant under an action of a nilpotent Lie group
JO  - Studia Mathematica
PY  - 1992
SP  - 239
EP  - 264
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-239-264/
DO  - 10.4064/sm-103-3-239-264
LA  - en
ID  - 10_4064_sm_103_3_239_264
ER  - 
%0 Journal Article
%A Ewa Damek
%T Maximal functions related to subelliptic operators invariant under an action of a nilpotent Lie group
%J Studia Mathematica
%D 1992
%P 239-264
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-239-264/
%R 10.4064/sm-103-3-239-264
%G en
%F 10_4064_sm_103_3_239_264
Ewa Damek. Maximal functions related to subelliptic operators invariant under an action of a nilpotent Lie group. Studia Mathematica, Tome 103 (1992) no. 3, pp. 239-264. doi: 10.4064/sm-103-3-239-264

Cité par Sources :