Stability of stochastic processes defined by integral functionals
Studia Mathematica, Tome 103 (1992) no. 3, pp. 225-238

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The paper is devoted to the study of integral functionals $ʃ_0^∞ f(X(t,ω)) dt$ for continuous nonincreasing functions f and nonnegative stochastic processes X(t,ω) with stationary and independent increments. In particular, a concept of stability defined in terms of the functionals $ʃ_0^∞ f(aX(t,ω))dt$ with a ∈ (0,∞) is discussed.
DOI : 10.4064/sm-103-3-225-238

K. Urbanik 1

1
@article{10_4064_sm_103_3_225_238,
     author = {K. Urbanik},
     title = {Stability of stochastic processes defined by integral functionals},
     journal = {Studia Mathematica},
     pages = {225--238},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {1992},
     doi = {10.4064/sm-103-3-225-238},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-225-238/}
}
TY  - JOUR
AU  - K. Urbanik
TI  - Stability of stochastic processes defined by integral functionals
JO  - Studia Mathematica
PY  - 1992
SP  - 225
EP  - 238
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-225-238/
DO  - 10.4064/sm-103-3-225-238
LA  - en
ID  - 10_4064_sm_103_3_225_238
ER  - 
%0 Journal Article
%A K. Urbanik
%T Stability of stochastic processes defined by integral functionals
%J Studia Mathematica
%D 1992
%P 225-238
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-225-238/
%R 10.4064/sm-103-3-225-238
%G en
%F 10_4064_sm_103_3_225_238
K. Urbanik. Stability of stochastic processes defined by integral functionals. Studia Mathematica, Tome 103 (1992) no. 3, pp. 225-238. doi: 10.4064/sm-103-3-225-238

Cité par Sources :