Stability of stochastic processes defined by integral functionals
Studia Mathematica, Tome 103 (1992) no. 3, pp. 225-238
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The paper is devoted to the study of integral functionals $ʃ_0^∞ f(X(t,ω)) dt$ for continuous nonincreasing functions f and nonnegative stochastic processes X(t,ω) with stationary and independent increments. In particular, a concept of stability defined in terms of the functionals $ʃ_0^∞ f(aX(t,ω))dt$ with a ∈ (0,∞) is discussed.
@article{10_4064_sm_103_3_225_238,
author = {K. Urbanik},
title = {Stability of stochastic processes defined by integral functionals},
journal = {Studia Mathematica},
pages = {225--238},
publisher = {mathdoc},
volume = {103},
number = {3},
year = {1992},
doi = {10.4064/sm-103-3-225-238},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-225-238/}
}
TY - JOUR AU - K. Urbanik TI - Stability of stochastic processes defined by integral functionals JO - Studia Mathematica PY - 1992 SP - 225 EP - 238 VL - 103 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-3-225-238/ DO - 10.4064/sm-103-3-225-238 LA - en ID - 10_4064_sm_103_3_225_238 ER -
K. Urbanik. Stability of stochastic processes defined by integral functionals. Studia Mathematica, Tome 103 (1992) no. 3, pp. 225-238. doi: 10.4064/sm-103-3-225-238
Cité par Sources :