Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform
Studia Mathematica, Tome 103 (1992) no. 2, pp. 143-159
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Suppose A is a (possibly unbounded) linear operator on a Banach space. We show that the following are equivalent. (1) A is well-bounded on [0,∞). (2) -A generates a strongly continuous semigroup ${e^{-sA}}_{s≤0}$ such that ${(1/s^2)e^{-sA}}_{s>0}$ is the Laplace transform of a Lipschitz continuous family of operators that vanishes at 0. (3) -A generates a strongly continuous differentiable semigroup ${e^{-sA}}_{s≥0}$ and ∃ M ∞ such that $∥H_n(s)∥ ≡ ∥(∑_{k=0}^n (s^k A^{k})/k!) e^{-sA}∥ ≤ M$, ∀s > 0, n ∈ ℕ ∪ {0}. (4) -A generates a strongly continuous holomorphic semigroup ${e^{-zA}}_{Re(z)>0}$ that is O(|z|) in all half-planes Re(z) > a > 0 and $K(t) ≡ ʃ_{1+iℝ} e^{zt} e^{-zA} dz/(2πiz^3)$ defines a differentiable function of t, with Lipschitz continuous derivative, with K'(0) = 0. We may then construct a decomposition of the identity, F, for A, from K(t) or $H_n(s)$. For ϕ ∈ X*, x ∈ X, $(F(t)ϕ)(x) = (d/dt)^2 (ϕ(K(t)x)) = lim_{n→∞} ϕ(H_n(n/t)x)$, for almost all t.
@article{10_4064_sm_103_2_143_159,
author = {Ralph deLaubenfels},
title = {Unbounded well-bounded operators, strongly continuous semigroups and the {Laplace} transform},
journal = {Studia Mathematica},
pages = {143--159},
year = {1992},
volume = {103},
number = {2},
doi = {10.4064/sm-103-2-143-159},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-2-143-159/}
}
TY - JOUR AU - Ralph deLaubenfels TI - Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform JO - Studia Mathematica PY - 1992 SP - 143 EP - 159 VL - 103 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-2-143-159/ DO - 10.4064/sm-103-2-143-159 LA - en ID - 10_4064_sm_103_2_143_159 ER -
%0 Journal Article %A Ralph deLaubenfels %T Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform %J Studia Mathematica %D 1992 %P 143-159 %V 103 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-2-143-159/ %R 10.4064/sm-103-2-143-159 %G en %F 10_4064_sm_103_2_143_159
Ralph deLaubenfels. Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform. Studia Mathematica, Tome 103 (1992) no. 2, pp. 143-159. doi: 10.4064/sm-103-2-143-159
Cité par Sources :