Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform
Studia Mathematica, Tome 103 (1992) no. 2, pp. 143-159

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Suppose A is a (possibly unbounded) linear operator on a Banach space. We show that the following are equivalent. (1) A is well-bounded on [0,∞). (2) -A generates a strongly continuous semigroup ${e^{-sA}}_{s≤0}$ such that ${(1/s^2)e^{-sA}}_{s>0}$ is the Laplace transform of a Lipschitz continuous family of operators that vanishes at 0. (3) -A generates a strongly continuous differentiable semigroup ${e^{-sA}}_{s≥0}$ and ∃ M ∞ such that $∥H_n(s)∥ ≡ ∥(∑_{k=0}^n (s^k A^{k})/k!) e^{-sA}∥ ≤ M$, ∀s > 0, n ∈ ℕ ∪ {0}. (4) -A generates a strongly continuous holomorphic semigroup ${e^{-zA}}_{Re(z)>0}$ that is O(|z|) in all half-planes Re(z) > a > 0 and $K(t) ≡ ʃ_{1+iℝ} e^{zt} e^{-zA} dz/(2πiz^3)$ defines a differentiable function of t, with Lipschitz continuous derivative, with K'(0) = 0. We may then construct a decomposition of the identity, F, for A, from K(t) or $H_n(s)$. For ϕ ∈ X*, x ∈ X, $(F(t)ϕ)(x) = (d/dt)^2 (ϕ(K(t)x)) = lim_{n→∞} ϕ(H_n(n/t)x)$, for almost all t.
DOI : 10.4064/sm-103-2-143-159

Ralph deLaubenfels 1

1
@article{10_4064_sm_103_2_143_159,
     author = {Ralph deLaubenfels},
     title = {Unbounded well-bounded operators, strongly continuous semigroups and the {Laplace} transform},
     journal = {Studia Mathematica},
     pages = {143--159},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {1992},
     doi = {10.4064/sm-103-2-143-159},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-2-143-159/}
}
TY  - JOUR
AU  - Ralph deLaubenfels
TI  - Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform
JO  - Studia Mathematica
PY  - 1992
SP  - 143
EP  - 159
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-2-143-159/
DO  - 10.4064/sm-103-2-143-159
LA  - en
ID  - 10_4064_sm_103_2_143_159
ER  - 
%0 Journal Article
%A Ralph deLaubenfels
%T Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform
%J Studia Mathematica
%D 1992
%P 143-159
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-2-143-159/
%R 10.4064/sm-103-2-143-159
%G en
%F 10_4064_sm_103_2_143_159
Ralph deLaubenfels. Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform. Studia Mathematica, Tome 103 (1992) no. 2, pp. 143-159. doi: 10.4064/sm-103-2-143-159

Cité par Sources :